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ABSTRACT
Recommendation can be framed as a graph link prediction task
naturally. The user-item interaction graph built within a single
domain often suffers from high sparsity. Thus, there has been a
surge of approaches to alleviate the sparsity issue via cross-domain
mutual augmentation. The SOTA cross-domain recommendation
algorithms all try to bridge the gap via knowledge transfer in the
latent space.We find there are mainly three problems in their formu-
lations: 1) their knowledge transfer is unaware of the cross-domain
graph structure. 2) their framework cannot capture high-order in-
formation propagation on the graph. 3) their cross-domain transfer
formulations are generally more complicated to be optimized than
the unified methods. In this paper, we propose the Preference Prop-
agation GraphNet (PPGN) to address the above problems. Specifi-
cally, we construct a Cross-Domain Preference Matrix (CDPM) to
model the interactions of different domains as a whole. Through the
propagation layer of PPGN, we try to capture how user preferences
propagate in the graph. Consequently, a joint objective for different
domains is defined, and we simplify the cross-domain recommen-
dation into a unified multi-task model. Extensive experiments on
two pairs of real-world datasets show PPGN outperforms the SOTA
algorithms significantly.
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1 INTRODUCTION
Recommendation system is an important area and has a wide range
of applications in data mining and machine learning. The inter-
actions between users and items can be formulated as a graph in
nature, while recommending new items for users can be regarded as
the link prediction task. The same group of users may be involved
in different domains, e.g., book recommendation and movie rec-
ommendation. It is widely admitted that the graph generated from
one single domain may suffer from severe sparsity and cold start
problem. Augmenting the system with multiple domains, i.e., super-
imposing cross-domain user-item interaction graphs has attracted
wide research interests [8].

Several Cross-Domain Recommendation (CDR) approaches have
been proposed and achieved promising performance, such as NeuMF+
[6], CoNet [6], and NATR [3]. They all model the inter-domain in-
teractions through latent-space-level knowledge transfer. NeuMF+
achieves CDR by simply sharing user embeddings between two
NeuMF [5]. CoNet conducts knowledge transfer on latent embed-
ding space based on a cross-stitch network. NATR also leverages
latent knowledge transfer, while they focus on protecting user pri-
vacy via not sharing user information.

In our study, we find there are several problems with such for-
mulations. Firstly, they process each domain separately and rely
on the embedding-level information sharing or latent feature map-
ping to transfer the knowledge (e.g., the CoNet uses two basic
networks to model two different domains). The main drawback
of such frameworks is that the knowledge transfer models the in-
teractions between different domains implicitly and is unaware
of the structure information bridging the two domains. Secondly,
we believe that the items of different domains may share similar
properties. As illustrated in Fig. 1, the users who like the movie Iron-
man may all be interested in DC or Marvel comic books. There are
implicit properties shared among Ironman, DC, and Marvel comics.
Through different hops of transitions, we can make connections on
such properties. Consequently, we can propagate the users’ pref-
erence on the high-order level graph. However, the formulation
of existing works can not capture such high-order relationships.
Thirdly, they have to implement their approaches through transfer
learning, which is complicated to optimize.

To address the above problems, we propose a novel graph-based
method, namely Preference Prorogation GraphNet (PPGN). We de-
fine the Cross-Domain Preference Matrix (CDPM) to maintain the
cross-domain interactions. Taking CDPM and randomly initialized
embeddings as input, we optimize the network parameters and the
embeddings by jointly minimizing the recommendation error from
different domains. The propagation layer of the network is used to
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Figure 1: An illustration of the preference propagation via
the joint interaction graph. Items in different colors are
from different domains. The graph is further reconstructed
as the sparse Cross-Domain Preference Matrix (CDPM) on
the right, which can be processed by themodel immediately.
Solid lines denote the known user behaviors, while dotted
lines denote the potential recommendation. Throughmulti-
hop propagation, our model can capture the transitions of
the user preference and make better predictions.

capture the high-order information transition over the joint graph.
Besides, the resulting unified model is easy to optimize. Our contri-
butions can be summarized as follows: i) proposing a novel deep
graph-based network to facilitate cross-domain recommendation
and address the limitations of previous approaches; ii) outperform-
ing the existing works significantly on real-world datasets.

2 METHODOLOGY
We propose the Preference Propagation GraphNet (PPGN) to ad-
dress the limitations of existing methods, i.e., capture the multi-hop
user preference propagation (Fig. 1), explicitly model the cross-
domain interactions and preserve the structure information. Fig-
ure 2 illustrates the architecture overview of PPGN, which mainly
contains two parts: 1) the graph convolution and propagation mod-
ule; 2) the knowledge integration and prediction module.
Definitions andNotations.We study the overlapping users’ cross-
domain recommendation on two domains Da ,Db , which can be
naturally generalized to multi-domain settings. Let n, p, q denote
the number of users, items in Da and items in Db respectively.

2.1 Graph Convolution and Propagation
The key to capture the high-order user-item relationships across
domains on the superimposed graph are to model the knowledge
flowing along the observed links (user-item interactions) and main-
tain the structure information of the graph itself. Following the
Graph Convolution Network (GCN) [7], we adopt the graph convo-
lution and propagation layer in this module.

In GCN, the graph convolution and propagation layer takes
the graph adjacent matrix and node embedding as inputs. The
embeddings are node-wise randomly initialized. To jointly and
directly model the cross-domain interactions, we define the Cross-
Domain Preference Matrix (CDPM) as follows:

A =



1, if interactions (user u, item ia or ib ) is observed;
0, otherwise.

(1)

where A ∈ R(p+n+q )×(p+n+q ) . Different from common collabora-
tive filtering matrix, CDPM merges the interactions between users
and items in both domains, which can propagate the information
across different domains directly.

To avoid gradient vanishing or explosion in the training process,
we add a self-loop diagonal matrix I ∈ R(p+n+q )×(p+n+q ) to A,
and carry out a normalization process using a degree matrix D ∈
R(p+n+q )×(p+n+q ) , so we get Â, Â = D−1 (A + I). Next, following
[5, 10], we map the ID of u, ia and ib to the embeddings eu ∈ Rd0 ,
eia ∈ Rd0 and eib ∈ Rd0 , where d0 is the initial embedding size.
We establish the following embedding table to represent the initial
latent factors of both users and items in Da ,Db .

E0 =



e ia1 , · · · , e iap︸           ︷︷           ︸
Da items embeddings

,

users embeddings︷         ︸︸         ︷
eu1 , · · · , e

u
n , e ib1 , · · · , e ibq︸           ︷︷           ︸

Db items embeddings



T

,

(2)

Then, we feed E0 and Â through multiple graph convolution and
propagation layers, with size-decreasing convolution kernels. We
apply at least three layers of the convolution and propagation to
ensure the breadth of cross-domain preference propagation. The
decreasing of kernel sizes is used because we do not care about
nodes that are too far from each other in high-level scope. The
propagation process can be expressed as: El = σ (ÂEl−1Wl + bl ),

where l ≥ 3 indexes the layers,Wl ∈ R
dl−1×dl , bl ∈ Rdl are the

trainable parameters. dl , dl−1 are the size of current layer and
previous layer respectively. σ is the Relu activation function.

Through ln times of propagation, we can get multiple embedding
matrices ranging from E0 ∈ R(p+n+q )×d0 to En ∈ R(p+n+q )×dn .

Then we get the global latent embeddings E ∈ R(p+n+q )×
∑dn
d0 by

concatenation, which mixes interactions of user-item at different
scopes, and makes full use of the process of preference propaga-
tion. Then we rearrange E into three parts of embedding matrices:

Eia ∈ R
p×
∑dn
d0 , Eu ∈ Rn×

∑dn
d0 and Eib ∈ R

q×
∑dn
d0 , respectively rep-

resenting Da item embeddings, user embeddings and Db item
embeddings, which will be used in the next module:

E =
[
E0,E1, · · · ,Eln

]
=

[
Eia,E

u,Eib
]T (3)

2.2 Knowledge Integration and Prediction
After getting the latent embeddings of users (i.e., eu ) and items
(i.e., eia and eib ), we feed tuples of (eia , eu , eib ) to the multi-layer
feedforward networks. In details, we combine eia , eu , and eu ,eib as
the inputs of two multi-layer perceptrons to get recommendation
predictions on training samples, namely r̂ua ,r̂ub between users and
items in both domains.

e0ua = [eia , eu ], e0ub = [eib , eu ]

e1ua = σ (W 1
uae

0
ua + b

1
ua ), e

1
ub = σ (W 1

ube
0
ub + b

1
ub )

· · ·

eLua = σ (W L
uae

L−1
ua + b

L−1
ua ), eLub = σ (W L

ube
L−1
ub + b

L−1
ub )

r̂ua = ϕa (eLua ), r̂ub = ϕb (eLub )

(4)
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Figure 2: The network architecture of PPGN.

whereWua ,bua/Wua ,bub are the trainable transformationmatrices
and biases. L is the total number of layers. ϕa ,ϕb are two one-layer
perceptrons to map eLua , eLub to two scalars r̂ua , r̂ub .

The goal of PPGN is to improve the prediction performance on
both domains via jointly learning. Naturally, the loss function of
PPGN L is designed as a joint cross-entropy loss from recommen-
dation prediction of both domains, namely Lua and Lub , and with
a regularization term Lr eд :

L = Lua + Lub + Lr eд

= −
∑

(ia,u,ib )∈T

rua log r̂ua + (1 − rua ) log (1 − r̂ua )

+ rub log r̂ub + (1 − rub ) log (1 − r̂ub ) + λ
∑
|Θ|

(5)

whereT denotes the training dataset including positive and nega-
tive samples, rua and rub denote the corresponding labels, λ denotes
the regularization coefficient, and Θ denotes all the trainable pa-
rameters. We use Adam as the optimizer to update the parameters.

2.3 Training Strategies
Considering the size of Â is generally huge, always up to hun-
dreds of thousands, it’s hard to conduct matrix multiplication be-
tween Â and El−1 in the graph convolution layer in one go. For the
sake of scalability, we propose to split Â into rows to get multiple
sub-matrices Âi and perform multiplication operation with El−1
respectively, then concatenate the results back to one matrix:

Â =
[
Â0, Â1, · · · , Âsn

]

ÂEl−1 =
[
Â0El−1, · · · , ÂsnEl−1

]

Our PPGN requires data inputs in forms of (ia , u, ib ), where ia
and ib can be positive or negative samples, and the ratio between
them is 1 : η(η > 1). To solve this sample imbalance problem, we
apply a weighting strategy to the loss function as follow,

L′ = −
∑

(ia,u,ib )∈T

α (rua log r̂ua + (1 − rua ) log (1 − r̂ua ))

+ β (rub log r̂ub + (1 − rub ) log (1 − r̂ub )) + λ
∑
|Θ|

(6)

Table 1: Statistics of the two pairs of datasets

Datasets # users # items # ratings density

Books 37, 388 269, 301 1, 254, 288 0.012%
Movies and TV 37, 388 49, 273 792, 319 0.043%
CDs and Vinyl 5, 331 55, 848 376, 347 0.126%
Digital Music 5, 331 3, 563 63, 303 0.333%

Table 2: Performance comparison on two pairs of datasets.
The best results are highlighted in boldface. And if the result
of PPGN-IP is better than other baselines, it’ll be underlined.

Metrics Dataset BPRMF NeuMF NeuMF+ CoNet SCoNet PPGN-IP PPGN

HR@10

Books .3654 .4300 .4291 .5223 .5141 .4594 .5770
Movies and TV .4538 .5665 .5605 .6460 .6465 .5689 .6909
CDs and Vinyl .5532 .6421 .6655 .7539 .7547 .7668 .7839
Digital Music .4742 .5322 .5991 .7179 .7205 .7492 .7874

MRR@10

Books .1543 .2241 .2249 .3273 .3261 .1835 .3280
Movies and TV .2034 .2775 .2742 .3651 .3829 .2498 .3869
CDs and Vinyl .2742 .3092 .3593 .4735 .4875 .4192 .5012
Digital Music .1431 .1549 .2472 .3855 .3878 .4112 .4388

NDCG@10

Books .2365 .2725 .2724 .3396 .3370 .2470 .3574
Movies and TV .2654 .3445 .3416 .4060 .4210 .3164 .4249
CDs and Vinyl .3532 .3933 .4303 .5227 .5291 .5020 .5697
Digital Music .2045 .2432 .3297 .4436 .4603 .4911 .5147

α =



η, if rua = 1;
1, if rua = 0.

β =



η, if rub = 1;
1, if rub = 0.

(7)

where α and β are the weight values determined by the labels of
input set, which speeds up the training process.

3 EXPERIMENTS
Datasets. In the experiments, we evaluate our model on two pairs
of real-world cross-domain datasets from Amazon-5cores1 [4] (each
user or item has at least five ratings), including Books & Movies
and TV ; CDs and Vinyl & Digital Music. We extract the overlapping
users in both domains, and show the detailed statistics in Table 1.
Baselines. To demonstrate the effectiveness, we compare our pro-
posed PPGN with the following methods, (a) BPRMF [10], a clas-
sical single-domain model using matrix factorization with BPR loss;

1http://jmcauley.ucsd.edu/data/amazon/
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Figure 3: Impact of GCN layer number on two pairs of datasets. The detail layer units of each structure are list on the left.

(b) NeuMF [5], a single-domain deep model using neural collabo-
rative network; (c) NeuMF+, a cross-domain deep model modified
from NeuMF by conducting multi-task training and sharing user
embeddings; (d) CoNet [6], a cross-domain deep model based on
a cross-unit neural network; (e) SCoNet [6], a modified version
of CoNet with sparsity-induced regularization. Due to NATR [3]
focusing on protecting the user privacy by not sharing user infor-
mation, we choose not to evaluate it. We also compare a variant of
our PPGN by replacing the multilayer perceptrons with embedding
inner product, named PPGN-IP.
Training Details. The negative/positive sample ratio η is set as 4.
The initial embedding size is 8. The MLP layers in all deep models
are [64, 32, 16, 8], and in PPGN we try multiple layer numbers in
graph convolutional network ranging from 3 to 6. We also set a
message dropout rate of 0.2 in all layers with the regularization
coefficient set as 0.1. And the learning rate is 0.001.
Evaluation. We adopt the widely used leave-one-out method to
perform the evaluation. The sampled negative items number is set as
99. Following [5], we adopt hit ratio (HR@k), mean reciprocal rank
(MRR@k) and normalized discounted cumulative gain (NDCG@k)
to evaluate the performances of all the models, where k is 10.
Results and analysis. Table 3 shows the overall performances,
from which we can have the following observations:(1) PPGN out-
performs all the baselines significantly, demonstrating it can gen-
erate high-quality recommendations via precisely capturing the
propagation of the user preference; (2) PPGN-IP achieves relatively
good results, especially in terms of HR and NDCG. This is because,
via preference propagation and structure information preserving,
the learned embeddings already contain rich information to re-
construct the users’ interests. However, no doubt the non-linear
mapping does a better job (PPGN outperforms PPGN-IP).

Figure 3 shows the impact of the number of graph convolution
and propagation layers. The marks with yellow color indicate the
best models, mostly 5 layers, which shows that the expressibility
increases with the layer number till a summit.

4 RELATEDWORK
Existing researches for CDRmainly consist of methods as below. For
non-neural approaches, EMCDR [9] defines a mapping method to
transfer the user factors by matrix factorization from source domain
to target domain. For deep models, DCDCSR framework [12] is de-
signed for generating a mixed rating matrix to solve cross-domain
and cross-system problems. CoNet and SCoNet [6] is proposed to

train a deep cross-stitch network for both domains simultaneously.
NATR [3] shares only the item information for user privacy. Mean-
while, NGCF [11] utilizes the graph neural network to enhance
collaborative filtering in single-domain recommendation. Some
aspect-based recommendation researches [1, 2] also inspire us to
investigate for more possibilities on CDR in the future.

5 CONCLUSION
We propose a novel deep graph-based approach to model high
order user-item relationships on the interaction graph for the cross-
domain recommendation system, namely PPGN. The strengths of
the proposed method include simplicity, effectiveness, and high-
expressibility. Extensive experiments have verified our motivation
for modeling user preference propagation on graph structures and
shown PPGN outperforms the SOTA algorithms significantly.
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