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Abstract. Vision and Language (VL) models have achieved remark-
able performance in a variety of multimodal learning tasks. The success
of these models is attributed to learning a joint and aligned representa-
tion space of visual and text. However, recent popular VL models still
struggle with concepts understanding beyond bag-of-objects in images &
texts, suffering from compositional reasoning about relationship between
objects & attributes and word order. To address the above issues, we
create a synthetic multimodal counterfactual dataset (COCO-CF) and
propose a novel contrastive learning framework (COMO). We contribute
the COCO-CF dataset which is automatically generated from MS-COCO
by injecting concepts from off-the-shelf language models and diffusion
models to reduce the bias of bag-of-objects. We contribute the COMO
framework for effectively leveraging COCO-CF to treat the counterfac-
tual samples as hard negatives and reweight their importance during
contrastive learning. Extensive experiments and ablations show COMO
achieved a significant improvement of VL concept understanding on the
two VL-Checklist and Winoground benchmarks over five strong VL base-
lines in their zero-shot setting evaluations.

Keywords: Concepts Understanding · Contrastive learning · Multimodal
Counterfactual Samples

1 Introduction

Vision and Language (VL) models have recently achieved impressive perfor-
mance in various challenging multimodal learning tasks, including image-text
retrieval [6, 43, 56], visual question answering [1, 2, 53], and captioning [21, 51],
thanks to the availability of large paired image-text corpora [24,35]. These cross-
modal tasks are heavily dependent on joint representations of multi-modalities
which are typically learned by building interactions between vision and lan-
guage features [10, 30, 31, 57]. The goal is to learn an effective aligning rep-
resentation spaces of images and text, typically under a contrastive learning
framework [4, 5, 50].

⋆ Corresponding author
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Fig. 1: Overview of our proposed multimodal counterfactual generation. (a) Standard
contrastive text-to-image loss (e.g. CLIP [31]) is easy to solve “bag-of-objects”; (b)
Contrastive learning with textual counterfactuals (e.g. SVLC [11])) teaches VL mod-
els by contrasting between counterfactual texts and original image. (c) Our proposed
contrastive learning with multimodal counterfactuals (COMO) generate both textual
and visual counterfactuals to improve the VL models’ concept understanding by con-
trasting between counterfactual image (and text) and original text (and image), and
matching the counterfactual image with counterfactual text.

Despite these great advances on various vision and language tasks, they often
exploit spurious correlations in datasets as shortcuts during training to fit the
dataset [11, 12, 38]. Recent works have found popular VL models have difficulty
in understanding structured concepts beyond bag-of-objects such as object at-
tributes, inter-object relations, and word order in the sentence [25, 26, 47]. As a
result, these models are vulnerable to text-domain or image-domain adversar-
ial attacks: the model can be easily deceived by counterfactual captions con-
structed from original captions by adding small perturbations [39, 52, 55]. For
example, large VL models such as CLIP [31] and CyCLIP [13] get confused by
these counterfactual captions and fail to distinguish the difference between fac-
tual and counterfactual concepts, suffering from compositional reasoning beyond
bag-of-objects (see Figure 1(a)).

In this paper, we propose a novel COntrastive learning framework with
Multimodal cOunterfactuals (COMO) to improve the VL model’s concepts un-
derstanding and compositional reasoning. We propose a way of leveraging the
existing VL pre-training source to improve concepts understanding without any
expensive and time-consuming human annotations on object attributes, rela-
tions, and states. The idea is to automatically generate a synthetic dataset by
injecting counterfactual concepts from powerful pre-trained language and text-
to-image stable diffusion [33]. On top of the recently proposed text augmen-
tation [3, 11, 42] (see Figure 1(b)), we go deeper to study the effects of multi-
modal augmentation—i.e., generating both text counterfactual and image coun-
terfactual examples—on the compositional reasoning performance of VL models
trained on such synthetic multimodal counterfactual dataset (see Figure 1(c)).

0 https://huggingface.co/CompVis/stable-diffusion-v1-4
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We empirically find that both text counterfactual and image counterfactual con-
tribute to the improved concepts understanding, demonstrating the necessity of
multimodal augmentation.

Our multimodal counterfactual generation not only substitutes the concept
in the text by exploiting pretrained masked language models, but also synthe-
sizes the corresponding image by exploiting text-to-image stable diffusion. Com-
pared to textual counterfactual generation, our multimodal counterfactual sam-
ples match the counterfactual text and image together, to learn out-of-domain
concepts and alleviate the data scarcity in multimodal learning task. The gen-
erated multimodal counterfactual dataset improves the quality of image-caption
alignment and reduces the bias of bag-of-objects. To effectively enforce the VL
model to distinguish between original concepts and substituted concepts, we
treat the counterfactual samples as hard negatives by modifying the traditional
contrastive loss to dynamically reweigh their importance. This new contrastive
loss pushes the concept representation of counterfactual samples (which are very
similar to the factual samples) far away from their corresponding factual sam-
ples).

Our main contributions can be summarized as:

– We contribute a multimodal counterfactual dataset (COCO-CF) which is
automatically generated from MS-COCO by injecting concepts from off-the-
shelf language models and stable diffusion to improve the VL model’s concept
understanding beyond bag-of-objects and compositional reasoning.

– We propose a novel contrastive framework (COMO) for effectively leveraging
COCO-CF to treat the multimodal counterfactual samples as hard negatives
and reweight their importance during contrastive learning to enforce the VL
model differentiating the original concepts from substituted ones.

– We demonstrate the compositional reasoning performance of COMO on
the two VL-Checklist and Winoground benchmarks with 3.17% (on VL-
Checklist’s attribute) and 4.35% (on Winoground’s image) improvement over
the current SOTA models, respectively. We also perform detailed ablation
on the importance of counterfactual text, counterfactual image, and the new
contrastive loss.

2 Related Work

Vision and Language Models Pretrained VL models [16, 22, 30] have made
impressive performance in various zero-shot downstream tasks, such as image-
text retrieval [56]. However, recent research [3, 11, 55] show that existing VL
models often exploit spurious correlations between non-causal features as short-
cuts during training to fit the dataset [12, 52] and still struggle with vision and
language concepts understanding. Popular VL models have difficulty in under-
standing structured concepts beyond bag-of-objects such as object attributes,
inter-object relations, and word order in the sentence [25, 26, 47]. As a result,
these models are vulnerable to text-domain or image-domain adversarial attacks:
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the model can be easily deceived by counterfactual captions constructed from
original captions by adding small perturbations [39, 52]. For example, large VL
models such as CLIP [31] and CyCLIP [13] get confused by these counterfactual
captions and fail to distinguish the difference between factual and counterfactual
concepts, suffering from compositional reasoning beyond bag-of-objects. In this
paper, we propose a data-driven technique to improve concepts understanding
for typical VL models.
Counterfactual Samples Generation Counterfactual samples are widely used
in various computer vision and natural language processing tasks [44,58]. Coun-
terfactual texts have been shown to improve the robustness of models through
random word substitution [34,45] and swap [52,54]. Counterfactual captions are
generated by rule-based [11, 34, 37] or pretrained language models [11, 42, 49]
to enhance semantic coherence and ground the mismatched words [48]. Diffu-
sion models [15] are exploited to generate text-image pairs [36,41,46]. Synthetic
videos and corresponding text captions are generated by using 3D graphic en-
gines [3]. A counterfactual dataset created by substituting nouns only, ignoring
the “beyond nouns” concepts [20]. In contrast, we create a multimodal coun-
terfactual dataset (COCO-CF) which is automatically generated from existing
VL pre-training source (i.e., MS-COCO) by injecting concepts from off-the-shelf
language models and stable diffusion. COCO-CF can be used to improve the VL
model’s concept understanding beyond bag-of-objects and compositional reason-
ing without any expensive and time-consuming human annotations on object
attributes, relations, and states.
Hard-Negative Contrastive Learning Contrastive learning (CL) [14] is ex-
ploited to learn aligned representations of text and image in most VL mod-
els [9, 18, 40]. Recently, some studies have investigated the selection of hard
negative examples [17, 42] and accounted for the importance of different nega-
tive samples [7,30,32].We extend the hard negative loss to vision-language con-
cepts understanding by treating the counterfactual samples as hard negatives
by modifying the traditional contrastive loss. This new contrastive loss pushes
the concept representation of counterfactual samples (which are very similar to
the factual samples) far away from their corresponding factual samples, so as
to improve the compositional reasoning about object relation, attributes, state,
and word order in texts.

3 Method

In this section, our COntrastive framework with Multimodal cOunterfactual
examples (COMO) are presented for improving the VL model’s understanding of
concepts and enhancing robustness of VL models. As shown in Figure 2, COMO
consists of an effective way of generating the multimodal counterfactual text
and image samples (see Figure 2(a-b)), and a novel loss of counterfactual guided
and weighted contrastive learning (see Figure 2(c)). In the following, we firstly
describe the counterfactual text and image samples generation in Section 3.1.
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Fig. 2: The proposed contrastive learning framework with multimodal counterfactual
samples (COMO). (a) Generating counterfactual text uses masked language models
such as BERT1. (b) Generating counterfactual image uses text-to-image diffusion mod-
els2. (c) Counterfactual guided and weighted hard negative contrastive learning. This
module feeds the generated counterfactual text and image into the same mini-batch
and exploits a hard negative loss to improve the VL models’ concept understanding.
The longer the red arrow, the further it pushes away.

Then, we introduce the counterfactual guided and weighted contrastive loss in
Section 3.2, respectively.

3.1 Generation of Multimodal Counterfactual

Recent works [11, 47] have shown the effectiveness of injecting concepts to VL
models by textual-modality augmentation. Compared to these works, we improve
the VL models’ concepts understanding by automatically constructing both tex-
tual and visual counterfactual examples in a way of multimodal augmentation.
Counterfactual Text Generation To improve the clear understanding of VL
models on concepts beyond bag-of-objects and rather than spurious correlated
features, we manipulate the original caption T o to construct its correspond-
ing counterfactual caption T c with subtle but completely different semantics.
Counterfactual text T c is generated by replacing a concept in T o, while most
of its original details remain the same. In this way, the generated counterfac-
tual caption represents the changed causal concept while remaining preserved

1 https://huggingface.co/bert-base-uncased
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details from the original caption can be viewed as potentially spurious correlated
features.

Large or pre-trained language models [8] are capable of suggesting multiple
words that fit the context given a sentence with one missing word. We can au-
tomatically create a plausible negative sentence which is difficult for VL models
to distinguish from its corresponding actual caption by randomly selecting a
masked word. Such masked word should be useful for compositional reasoning
about objects relation, attributes, and states. This can be achieved by NLP pars-
ing technique to identify all objects (nouns), relations (verbs and adverb), and
attributes (adjectives) in the original caption sentence. In specific, we randomly
choose a word among these concepts, replace the selected concept in T o with the
[MASK] token, and then retrieve the most probable replacements by the language
models unmasking as our generated counterfactual caption T c (see Figure 2(a)).
These counterfactual/negative examples enforce the VL model focusing on the
important details that affect the concepts understanding and compositional rea-
soning.
Counterfactual Image Generation After creating a counterfactual caption
T c, the VL models can understand the original text-image pair (T o, V o) but
have no idea of what the corresponding image of counterfactual caption T c looks
like. Therefore, we explicitly generate a corresponding counterfactual image V c

by feeding the counterfactual caption T c into stable diffusion models (see Fig-
ure 2(b)). To control the quality of generated images and enable the changed
concept (causal concept) to be learned in the presence of unchanged concepts
(spurious concepts) between T c and T o, we firstly generate multiple images
{Vi}ni=1. Then we choose the counterfactual image V c which has the highest
similarity score with both the counterfactual caption T c and the original image
V o by:

scorei = εT (T
c) · εV (Vi) + εV (V

o) · εV (Vi) (1)

where εT (·) and εV (·) are text and image encoders in CLIP3, respectively. The
first part of the score measures the consistency between the generated image and
counterfactual caption T c, and the second part measures the similarity between
the generated image and the original image V o.

3.2 Counterfactual Guided and Weighted Contrastive Learning

Contrastive learning [27] is an effective approach for multimodal alignment,
which pulls the positive pairs to anchor nearby locations, while pushes negative
pairs further away. A dual-encoder VL model like CLIP [31] admits text-image
pair (T, V ) and computes their similarity score by:

S(T, V ) = exp(t⊤v/τ) (2)

where t = εT (T ) and v = εV (V ) are the encoded features of the image-text
pair respectively. Temperature τ > 0 is learnable.
3 https://openaipublic.azureedge.net/clip/ViT-B-32
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Counterfactual Guided Contrastive Learning The naive contrastive learn-
ing with uniform sampling from large-scale datasets can often provide negative
samples that are not necessarily discriminative. In our counterfactual guided
contrastive learning, we feed the original example with its corresponding coun-
terfactual example into the same mini-batch so as to enforce the VL model
differentiates the original concept from substituted concept (see Figure 2(c)).

Given a mini-batch B = {(Ti, Vi)}ni=1 of containing the factual and its coun-
terfactual image-caption pairs, the contrastive CLIP-loss [27] is defined as:

LHN =−
∑n

i=1

[
log

S(Ti, Vi)∑
j S(Ti, Vj)

+ log
S(Ti, Vi)∑
j S(Tj , Vi)

]
(3)

The hard negative for factual image-caption (T o, V o) (causal concept) is its
corresponding counterfactual image-caption (T c, V c) (spurious concept), which
needs to be pushed far away (see Figure 2(c)).
Counterfactual Weighted Contrastive Learning To emphasize hard nega-
tive pairs (i.e., between the factual example and its corresponding counterfactual
example) and push the embedding of counterfactual sample (which is close to
the factual example) far away from the anchor, we modify the un-weighted con-
trastive loss in Eq.3 as the weighted version in the following:

LHNW = −
∑n

i=1

[
log

S(Ti, Vi)

S(Ti, Vi) +
∑

j ̸=i αij · S(Ti, Vj)

+ log
S(Ti, Vi)

S(Ti, Vi) +
∑

j ̸=i βji · S(Tj , Vi)

] (4)

where the weights are computed by:

αij =
(n− 1) · S(Ti, Vj)∑

k ̸=i S(Ti, Vk)
βji =

(n− 1) · S(Tj , Vi)∑
k ̸=i S(Tk, Vi)

(5)

Weights αij and βij are designed that difficult negative pairs (e.g., between
original examples and corresponding counterfactual examples) are emphasized,
and easier pairs (e.g., between original examples and other “bag-of-objects” ex-
amples) are ignored. So, the VL model can more easily understand the con-
cepts beyond objects and improve the compositional reasoning about relation,
attribute, and word order. Observe that we get contrastive objective of Eq.3
when setting weights to be all ones. The form of weights is an unnormalized von
Mises-Fisher distribution [30].

4 Experiments

4.1 Datasets

To test the effectiveness of our proposed COMO for improving VL models’ vi-
sion language concepts understanding, we train the model using our counterfac-
tual image-text pairs generated from MS-COCO [24]. We evaluate on the two
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Table 1: The statistics of factual and counterfactual examples in the generated COCO-
CF dataset.

Factual Counterfactual Total
# images # text # images # text # images # text

COCO-CF 113K 567K 567K 567K 680K 1,134K

benchmarks, VL-Checklist [55] and Winoground [39] over strong VL models. We
introduce the training and testing datasets in detail below.

Training datasets. We start from MS-COCO [24] dataset as our factual sam-
ples, where an image has multiple corresponding captions. We automatically
generate the counterfactual image-text pairs from COCO with our multimodal
counterfactual generation pipeline (see Figure 2(a-b)). The augmented dataset
is named as COCO-CF, meaning COCO counterfactual examples. As shown in
Table 1, we obtain additional 567K counterfactual images and captions based
on the original 113K images and 567K text. Finally, COCO-CF has total 680K
images and 1,134K captions.

Evaluation datasets. We evaluate our models on VL-Checklist, Winoground
and 21 classification dataset in zero shot setting.

VL-Checklist [55] is a large-scale dataset comprised of Visual Genome [19],
SwiG [29], VAW [28], and HAKE [23]. Each image is associated with two cap-
tions, a positive and a negative. The positive caption corresponds to the image
and is taken from the source dataset. The negative caption is generated from
the positive caption by changing one word only, so the resulting sentence no
longer corresponds to the image. Depending on the word that was changed, VL-
Checklist evaluates seven types of VL concepts divided into three categories:
(i) Attributes (color, material, size, state, and action); (ii) Relations (spatial or
action relation between two objects and/or humans); and (iii) Objects (spatial
location and size).

Winoground [39] is a dataset that evaluates the ability of VL models for
compositional reasoning, specifically understanding the meaning of the sentence
after changing the order of its words. An example comprises of two images and
two texts. The texts have the same set of words but in a different order, each text
corresponding to one image in the paired sample. The Winoground evaluation
divide into three metrics: (i) image score - percent of samples where the model
picks the correct image for each text; (ii) text score - percent of samples where
the model picks the correct text for each image; (iii) group score - percent of
samples where both text and image score conditions are satisfied jointly.

Zero-Shot Classification is a dataset that includes 21 different classification
datasets, we evaluate our model and report the average result over the dataset.
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Table 2: Performance comparison with strong VL baselines on the VL-Checklist and
Winoground benchmarks in zero-shot setting evaluation.

Models Fine-tuned VL-Checklist Winoground 21-Zero-Shot
Dataset Size Relation Attribute Object Text Image Group Task

CLIP (Radford et al, 2021) None 61.80 67.32 82.91 30.50 11.00 8.75 56.37

CyCLIP (Goel et al, 2022) None 61.15 66.96 80.87 30.50 10.75 9.00 55.99

NegCLIP (Yuksekgonul et al, 2023) None 63.52 72.23 81.35 29.50 10.50 8.00 -

SyVic (Cascante-Bonilla et al, 2023) 767K 69.39 70.37 84.62 30.00 11.50 9.50 54.77

SVLC (Doveh et al, 2023) 3M 69.68 71.18 84.75 29.75 11.00 9.00 55.27

COMO (ours) 1.1M 71.16 73.44 86.20 31.00 12.00 9.75 55.87

Improvement over best baseline - 2.12% 3.17% 1.70% 1.60% 4.35% 2.63% -0.89%

4.2 Implementation details

For the multimodal counterfactual samples generation(Sec. 3.1), we use NLP
spacy4 to parse the sentence into its components including nouns, verbs, adjec-
tives, adverbs, etc. Then we utilize the popular BERT5 as the masked LMs to
generate the counterfactual text. After we generate the counterfactual captions,
we use the text-to-image stable diffusion model6 to synthesize multiple images
(size set to 10). For the model architecture, following [3,11], we utilize the orig-
inal CLIP implementation that initialized with the checkpoints of VIT-B/327

released by the OpenAI. We modify the naive contrastive loss in their codebase
to our counterfactual guided-and-weighted hard negative contrastive loss (see
Eq.4). For the model training, we use Adam optimizer with a 1e-6 initial learn-
ing rate and a 1e-7 weight decay for finetuning, where the batch size is set to 16
and the training epoches to 5. We conduct all experiments on one NVIDIA GTX
A100-PCIE-40GB GPUs with PyTorch 1.9.0. Our code and model checkpoints
will be released upon acceptance together with the generated counterfactual
examples COCO-CF dataset.

4.3 Main Results

We compare our COMO method with five state-of-the-art methods on the VL-
Checklist and Winoground benchmark datasets and the results are shown in
Table 2, where the best results are in boldface. We have following observations.

We observe that our COMO achieves the new state-of-the-art performance
on both concepts understanding datasets. Specifically, our COMO outperforms
the best baseline with 3.17% relative improvement in terms of VL-Checklist’s
attribute metric, and with 4.35% relative improvement in terms of image score
on Winoground. This shows that our COMO can better understand the concepts
4 https://github.com/explosion/spacy-models/en_core_web_trf-3.7.2
5 https://huggingface.co/bert-base-uncased
6 https://huggingface.co/CompVis/stable-diffusion-v1-4
7 https://openaipublic.azureedge.net/clip/ViT-B-32
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Table 3: Ablated performance of COMO trained on combinations of factuals and coun-
terfactuals. For training on full factuals and counterfactuals (i.e. COCO-CF), COMO
has two learning strategies, Random and In-Batch. The In-Batch strategy enforces the
factual and its corresponding counterfactual feeded into the same mini-batch (see Fig-
ure 2(c)), while the Random strategy does not.

Fine-turned Datasets VL-Checklist Winoground
Relation Attribute Object Average Text Image Group Average

None (pre-trained CLIP) 61.80 67.32 82.91 70.67 30.50 11.00 8.75 16.75

Factuals Only (i.e. COCO) 62.12 67.43 82.98 70.84 30.25 10.50 8.75 16.50

Factuals + Counterfactuals (Random) 61.95 67.79 83.12 70.95 30.25 11.00 9.00 16.75
Factuals + Counterfactuals (In-Batch) 71.16 73.44 86.20 76.93 31.00 12.00 9.75 17.58
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Fig. 3: (a) Detailed results of baselines (CLIP, SVLC, SyVic) and our COMO on VL-
Checklist. A: Attribute, R: Relation. (b) Impact of guided-and-weighted contrastive
loss; (c) Influence of the number of generated images; (d) Performance varying with
the training percent. (all evaluated on VL-Checklist)

beyond bag-of-objects and conduct compositional reasoning about relation, at-
tribute, and word order.

Furthermore, our COMO gets the best result over all six settings on both
datasets. It shows our model can distinguish the differences between causal and
spurious concepts. The improvement of COMO over baselines could be attributed
to reasons below: i) COMO admits multimodal counterfactual examples by in-
jecting concepts from pretrained masked language models and text-to-image
diffusion model, which explicitly improve the clear understanding of VL models
on semantic concepts; ii) COMO adopts a modified contrastive loss to reweight
the importance of counterfactual samples in the mini-batch, which enforces the
model to differentiate the original concepts in factuals from substitute concepts
in counterfactuals.

We display relative gains on fine-grained “Attribute” and “Relation” tests of
VL-Checklist as shown in Figure 3a. It is clear that COMO gets gains across
over all tests (Attribute: size, material, color, state, action; Relation: spatial, ac-
tion). These improvements can be contributed to the multimodal counterfactual
samples that enforce the model to attend to the small concepts changes in the
vision and text, and hard negative contrastive loss that push the embedding of
counterfactual samples close to the anchor to be far away by reweighting the
importance of counterfactual examples.
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Table 4: Ablated contribution from counterfactual images and counterfactual texts in
COMO.

Counterfactual VL-Checklist Winoground
Image Text Relation Attribute Object Average Average

CLIP 61.80 67.32 82.91 70.67 16.75

% % 62.12 67.43 82.98 70.84 16.50
% " 69.56 71.11 84.55 75.07 16.13
" % 69.34 70.85 84.22 74.80 16.58
" " 71.16 73.44 86.20 76.93 17.58

4.4 Ablation Studies

Ablation on Mixing Factuals and Counterfactuals We have demonstrated
that augmenting factual datasets (e.g. MS COCO) could improve the concept
understanding and compositional reasoning of VL models with the help of multi-
modal counterfactual examples. We now conduct study on ablated contribution
from factual, counterfactual, and their learning strategies. As shown in Table 3,
we have the following findings. Firstly, compared to the pretrained CLIP, fine-
tuning COMO on the factual only dataset (i.e., MS-COCO) has a negligible
impact on Winoground dataset. It shows that the COMO that finetuning on
only factual dataset still has the difficulty in concepts understanding beyond
“bag-of-objects”. Secondly, there is almost no improvement of performance when
finetuning the COMO on the factual and counterfactual dataset with a random
sampling strategies. It shows the necessity of enforcing the contrastive learn-
ing between counterfactuals and the factuals explicitly to reduce the VL model
from the bias that taking spurious correlations between captions and images as
shortcuts during training. Thirdly, compared to the random sampling strategy,
sampling the factual and counterfactuals together (i.e. in a mini-batch) could
improve VL models’ robustness and the ability of concepts understanding and
compositional reasoning.
Ablation on Multimodal Counterfactuals Text and Image We have ab-
lated the contributions from multimodal counterfactuals, and now we investigate
the impact of individual counterfactual text and individual counterfactual im-
age. As shown in Table 4, removing either of them degrades the performance
while removing both of them degrades a lot, demonstrating the usefulness of
both counterfactual texts and counterfactual images to improve VL models’
concepts understanding. On the one hand, for the effectiveness of counterfactual
text, COMO trained with counterfactual text performs much better than that
trained with factual samples only. For examples, the relative improvement is
11.9% in terms of VL-Checklist’s relation metric. It shows that it is necessary
to force the VL model to attend to the small changes in the text, which could
improve the VL model’s understanding on concepts. On the other hand, for the
effectiveness of counterfactual image, COMO trained with counterfactual image
performs much better than that trained with factual samples only. For example,
the relative improvement is 11.6% in terms of VL-Checklist’s relation metric. As
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Table 5: Ablated Guided-and-Weighted Contrastive Loss on training from scratch and
pretrained setting.

Pretrained Weighted loss VL-Checklist
Relation Attribute Object Average

✓ ✓ 71.16 73.44 86.20 76.93
✗ ✓ 64.42 64.75 75.04 68.07
✓ ✗ 70.02 72.86 85.37 76.08
✗ ✗ 62.13 62.48 73.81 66.14

for the relative importance of counterfactual texts and counterfactual images,
COMO trained with counterfactual texts is better than that trained with coun-
terfactual images when testing on the VL-Checklist, while it is on the contrary
when testing on Winoground.
Ablation on Guided-and-Weighted Contrastive Loss So far, we have
demonstrated and ablated the contributions of multimodal counterfactual ex-
amples from the perspective of data augmentation, and now we investigate the
contributions of the proposed guided-and-weighted contrastive loss from the per-
spective of effective learning. As shown in Table 5, on pretrained setting, the
performance of COMO w/o the weighted loss consistently degrades on all of
VL-Checklist metrics (relation, attribute, object). Although the performance of
COMO in training from scratch drops by a large margin, to explore the effec-
tiveness of weighted loss in training from scratch, we compare the COMO with
naive loss and weighted loss in training from scratch settings. The table shows
that our weighted loss still performs better than the naive contrastive loss in
training from scratch settings, which shows the design of weighted loss is robust.
These ablation results show that the full guided-and-weighted contrastive loss is
beneficial compared to the standard (i.e. CLIP-loss) and unweighted (i.e. Eq.3)
ones.

4.5 Hyper-parameter Analysis

Influence of the number of generated images To improve the quality of
generated images by text-to-diffusion models, and to reduce the inconsistencies
in generated images and texts, we synthesize multiple images for a single cap-
tion at different time-step. In Figure 3c, we show the impact of the number of
generated images on the three VL-Checklist evaluation settings (i.e. relation,
attribute, object). We can see that, the performance increases as the number of
generate images increases on all three evaluation settings, until getting saturated
at around 8. This shows that filtering among the multiple generated images as
the most satisfactory counterfactual image can improve the overall quality of our
generated counterfactuals.
Low-resource scenario We conduct experiments in low-resource setting by
randomly sampling part of the full training set to simulate a low-resource sce-
nario. The results are shown in Figure 3d where the CLIP and COMO are both
trained on the corresponding low-resource training set. We can see that both
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Fig. 4: (a) Attention visualizations on COMO and CLIP. (b) Qualitative analysis on
COMO and its three variants. Note, CLIP i.e. COMO w/o both of counterfactual
images and texts.

CLIP and COMO get better performance with the increasing of more training
examples. Moreover, our COMO achieves much advantage under the extreme
low-resource scenario. In detail, relative improvements of COMO over CLIP are
2.24% at training percent 10%. It shows that our COMO is effective in improving
the VL concepts’ understanding under data scarcity scenario.

4.6 Case study

Attention visualizations We conduct attention visualizations on COMO and
CLIP to observe the ability of visual and language concept understanding. As
shown in Figure 4a, our COMO can capture object “knife” and attribute “big”
while CLIP wrongly attends to “plates” and “small” cat. It shows that our COMO
improve the clear understanding of VL models on semantic concepts and learn
the difference between VL concepts.
Qualitative analysis We conduct qualitative experiments to understand the
working of COMO and its three variants, i) COMO without counterfactual im-
ages (COMO w/o CF-image), ii) COMO without counterfactual texts (COMO
w/o CF-text), and iii) COMO without both of them (i.e. CLIP). The results
are shown in Figure 4b. Firstly, for frequently occurring VL “bag-of-objects”
concepts, such as bus and grass in Figure 4b (Object-location), all VL models
including CLIP, two variants of COMO, and COMO predict the caption cor-
rectly. However, CLIP can not identify the difference between “cooking” and
“sleeping” in Figure 4b (Attribute-action), while all other VL models with coun-
terfactuals match the image to the ground-truth caption correctly. It shows that
the counterfactuals can help the model to learn the differences between concepts.

Secondly, as for the importance of counterfactual texts (i.e. by observing the
variant COMO w/o CF-text), as shown in Figure 4b (Attribute-color), removing
counterfactual texts leads to the COMO wrongly matching the image to the
ground-truth caption. It is shown that the counterfactual text can help the model
to learn the general concepts, especially when the factual description is coarse.



14 Lai et al.

Thirdly, as for the importance of counterfactual images (i.e. by observing
the variant COMO w/o CF-image), as shown in Figure 4b (Relation-spatial),
removing counterfactual images leads to the COMO wrongly predict the caption
when the image has lots of visual concepts unrelated to the text. It shows that VL
models with counterfactual images can reduce the influence of spurious concepts
in image.

Fourthly, as for the importance of multimodal counterfactuals, as shown in
Figure 4b (Attribute-material), removing multimodal counterfactuals leads the
COMO can not identify the material of cabinet from the image. The improve-
ment of the VL model’s concept understanding could be attributed to enforcing
the model to attend to the small concept changes in the counterfactual image and
text, and to match the counterfactual image and counterfactual text together to
learn out of domain concepts.

We observe that, as shown in Figure 4b (Attribute-state), all VL models fail
in matching the image to its ground-truth caption “closed cabinet”. The failing
reason could be that an “open door” appears in the image, which guides the model
to trust that “open” is matching to the image. Though multimodal counterfactual
samples improve the model’s understanding of concepts, VL models still suffer
from the problems of “bags of objects” in images and texts. It is worthy of
investigating in improving concepts understanding and compositional reasoning
of VL models.

5 Conclusions

We have presented a data-and-algorithm driven technique for enhancing the per-
formance of VL models to understand beyond “bag-of-objects” and reason about
composiontal concepts including attributes, relations, and word order. Our pro-
posed contrastive learning framework with multimodal counterfactuals attains
significant gains over five strong VL models on two benchmark datasets. It builds
upon the modeling strength and knowledge of nowadays language models and
diffusion models by injecting concepts to VL models, suggesting generalizations
to future VL models. We demonstrated the necessity of both counterfactual texts
and counterfactual images. We also show the necessity of effective learning with
guided-and-weighted contrastive loss. Extensive ablation and case study help
understand the working of the proposed approach as well its limitations, sug-
gesting the future work of investigating other factors on improving compositional
reasoning.
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