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A B S T R A C T

In this study, we focus on the task of selecting high-quality answers selection in knowledge-graph-based
(KG-based) conversational question answering (ConvQA) system. Effectively exploring a user’s intention and
modeling historical interaction records are challenging. To address this challenge, we propose the Dialog
grAph eNhanced prompT lEarning (DANTE) model, which simultaneously integrates sequential and structural
information from questions and interactive logic. While the structural information was exploited in previous
studies by simply converting it into linear strings in a ‘‘pre-train, predict’’ paradigm, DANTE comprises the
use of a novel graph representation for jointly modeling the QA pairs, relevant KG paths, and dialog contexts.
The dialog graph constructs in both the turn-level and dialog-level, where DANTE fuses the structural and
sequential information deeply in a ‘‘pre-train, prompt, and predict’’ manner. The experimental results showed
that DANTE improves the absolute points by 7.1% and 8.2% in terms of the P@1 and mean reciprocal rank
metrics, respectively, on the ConvQuestions/ConvRef benchmark compared with state-of-the-art baselines.
1. Introduction

Knowledge-graphs-based (KGs-based) conversational question an-
swering (ConvQA) with multi-turn dialogs is an essential task in in-
formation retrieval and human–machine interactions [1–3]. It involves
mapping a user’s query or utterance in the context of multi-turn dia-
log historical interaction records to formal queries for correct-answer
retrieval or relevant information. With the growing popularity of Ar-
tificial General Intelligence (AGI), e.g., ChatGPT [4], LaMDA [5], as
researchers, we not only perceive the significant potential of Large
Language Models (LLMs), but also the shortcomings of their lack of
semantic knowledge and explicit reasoning ability, which is the focus
of the KG-based ConvQA task.

Understanding KGs-based ConvQA is challenging owing to the dual
question–answer problem. On the question side, the request is mainly
intent-implicit. In a multi-turn interaction setting, user goals and in-
formation needs can be ambiguous or may evolve throughout the
conversation. With implicit intent, the user acquires the necessary
knowledge by interacting with the system through multi-turn question–
answer pairs, engaging in an exploratory process that often involves an
anaphora ellipsis in query sentences [6]. On the answer side, knowl-
edge should be context-aware. In a knowledge-oriented dialog, the
user’s queries can inherently exhibit complex dependencies on the
knowledge mentioned in the dialog context, where questions requiring
reasoning or inference based on the context information gathered thus
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far are possibly raised from the user side. For instance, in Fig. 1, the
user could ask ‘‘Where is he from originally? ’’ after asking about the
author of the book ‘‘Moby-Dick’’. To answer such queries, the system
should sufficiently consider the dependency relationships between the
current query and preceding dialog context [7,8]. Overall, the selection
of the high-quality and most relevant answers is a crucial goal of
KGs-based ConvQA.

Since the introduction of ConvQuestion [1], researchers have ex-
plored various approaches to KGs-based ConvQA tasks, including graph-
based reasoning [9,10], logical form generation models [11], reinforce-
ment learning [12], and hybrid approaches that combine textual and
KG-based information [13,14]. Pre-trained language models (PLMs)
outperformed other SOTA approaches, including query and context
encoding, embedding matching, and transfer learning, which have
significantly advanced the KGs-based ConvQA task [15,16]. However,
the previous research has exploited the structural information with
PLMs by simply converting it into linear strings in a ‘‘pre-train, pre-
dict’’ paradigm. However, the challenges remain when dealing with
KG-specific reasoning, query formalization, and context integration.
Moreover, the capture of sufficient depth and synchronization of mod-
eled sequences and structural information to obtain further semantics
remains challenging. Specifically, it refers to the process of identifying
and capturing synchronized representational patterns using shared cues
and entities across the three elements involved within each dialog turn.
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Fig. 1. Motivating example illustrating a sample conversation. With conversational
interaction history (a), our proposed approach DANTE constructs a dialog graph that
captures context dependency and (b) the KG exploration process (c) simultaneously to
reason over KG paths for KGs-based ConvQA tasks. The predicted answer for Q5 is "Yes"
based on the reasoning path ‘‘<head: Moby-Dick, predict: Movie, tail: ‘‘Moby-Dick’’>’’.

Prompt-based PLMs methods have demonstrated remarkable au-
tonomous capabilities across numerous NLP tasks [17,18]. We focus on
the problem of integrating sequential and structural information deeply
and simultaneously in a ‘‘pre-train, prompt, and predictive ’’ manner.
In this paper, we present the Dialog grAph eNhanced prompT lEarning
(DANTE) model, which integrates sequential and structural information
simultaneously from questions and interactive logic, respectively, to
obtain the semantic benefits of both types of information to improve
the high-quality answer-selection performance of the KG-based ConvQA
system. Specifically, (1) capturing the question–answer (QA) and rele-
vant KG paths dialog context simultaneously by constructing a dialog
graph representation; (2) boosting the PLM with both sequential and
graph structure information in the prompt learning mode; and (3)
for high-quality answer selection, training DANTE in a dialog graph
enhanced the prompt multi-task learning paradigm.

The main contributions of this study are as follows:

∙ We present DANTE, which designs a graph-enhanced prompt
learning paradigm that can jointly train the model in a ‘‘pre-train,
prompt, predict’’ manner with a multi-task objective. To the best
of our knowledge, DANTE is the first approach that incorporates
prompt learning in a KGs-based ConvQA system.

∙ DANTE constructs a novel graph representation for jointly mod-
eling the sequential (fluent question–answer pairs) and structural
(entire dialog history and context-aware knowledge in KGs) infor-
mation at both the turn-level and dialog-level to obtain profound
semantic fusion and explicit representation for the KGs-based
ConvQA task.

∙ DANTE realizes high-quality and high-relevance answer-selection
performance in the KGs-based ConvQA system, which improves
the absolute points by 7.1% and 8.2% in terms of the P@1 and
mean reciprocal rank metrics on the ConvQuestions benchmark
compared with SOTA baselines.

2. Related work

In this section, we investigate the extant research on KGs-based Con-
vQA and focus on the studies most relevant to our proposed approach,
including graph approaches on conversational tasks and prompt learn-
ing approaches.
2

2.1. KGs-based ConvQA

ConvQA has attracted significant attention and demonstrated sig-
nificant potential [19]. However, many challenges have been identi-
fied, including complex question analysis and large-scale knowledge
queries [20–23], thus giving rise to the KGs-based ConvQA to answer
questions based on the provided graph-based structured knowledge,
which in turn has the potential to revolutionize how humans in-
teract with machines. The majority of recent studies on KGs-based
ConvQA have employed the semantic parsing approach [11,24–26]
and multi-task learning paradigm [3,27,28] to answer conversational
questions.

For KG path ranking, Christmann et al. [1] proposed a graph ex-
ploration approach CONVEX, which involves addressing conversational
inquiries within a KG by retaining the contextual flow of conversa-
tion through tracked entities and predicates, thereby automatically
deducing absent or uncertain elements for subsequent queries. CONVEX
tactfully extends the frontier to discover and prioritize potential an-
swers to the provided questions. Bi et al. [29] proposed UMRNet based
on an attention redistribution mechanism that was capable of handling
the mapping problems between the question and KG relations. Kacu-
paj et al. [14] presented a contrastive representation learning-based
approach to rank KG paths effectively. Kaiser et al. [12] introduced
a reinforcement learning (RL) model that conceptualizes the process of
answering as multiple agents traversing the KG in parallel. Bi et al. [30]
proposed an effective model for handling multi-hop KG path reasoning
tasks under weak supervision settings based on reward integration
and policy evaluation. These agents learn from a continuous flow of
conversational questions and their revised forms.

2.2. Graph approaches on conversations

Graph data have functioned as organized knowledge repositories in
numerous systems by explicitly modeling the interactions among differ-
ent entities, therefore, they are frequently employed in conversational
tasks to infer contextual and commonsense knowledge.

Graph on Visual Dialog. To address the visual dialog task, Zheng
et al. [31] proposed a graph-based approach that explicitly formalizes
the task as an inference problem within a graphical model featuring
partially observed nodes and unknown graph structures. Schwartz et al.
[32] developed a factor-graph-based attention mechanism that operates
on data utilities to resolve the details and nuances on visual dialog.Guo
et al. [33] presented a Context-AwareGraph neural network that can
iteratively update the graph structure using an adaptive top-K message
passing mechanism to model the underlying context-aware relation
inference.

Graph on Task-oriented Dialog. Graph-based approaches on task-
oriented dialog focus on efficiently incorporating knowledge into end-
to-end task-oriented dialog systems. In recent studies, Zhao et al. [34]
explore a dialog state GAT consisting of a dialog context subgraph
and an ontology schema subgraph to alleviate the cross-domain slot
sharing issue. Wu et al. [35] proposed a Graph Memory Network-based
(GMN-based) Seq2Seq model, GraphMemDialog, to acquire the latent
structural insights concealed within the dialog history and to depict
the dynamic interaction between the dialog history and knowledge
bases. Yang et al. [36] studied target-oriented dialog using a com-
monsense KG and designed a global reinforcement learning framework
that incorporates planned paths. This approach facilitates adaptable
adjustments to the local response generation model to align with a
global target.

Graph on KGs-based ConvQA. For graph-based inference on the
KGs-based ConvQA task, Chen et al. [37] presented a graph-learning
technique that can effectively capture conversational flow in dialogs,
constructing a history-aware context graph of each conversation turn.

Yasunaga et al. [38] presented a QA-GNN model that enables LMs to
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identify pertinent information from extensive KGs and execute uni-
fied reasoning across both the question-answering context and KGs.
For ConvQA over heterogeneous sources, Christmann et al. [39] con-
structed a heterogeneous graph from multiple knowledge sources that
was then iteratively reduced using GNN-incorporated question-level
attention.

2.3. Prompt learning approaches

Prompt Learning on NLP Tasks. In recent research, the new
training paradigm named ‘‘pre-trained, prompt, and predict’’ has been
proposed and described as the key to LLMs in real-world tasks [18], and
it allows the language models to be pre-trained on extensive volumes
of unprocessed text. The model can realize few-shot or even zero-
shot learning by formulating a novel prompting function and adapting
to new scenarios with limited labeled data. The prompt learning of
NLP tasks comprises prompt template engineering [17,40], prompt an-
swer engineering [41,42], multi-prompt learning [43,44], and prompt-
based training strategies [45]. In recent studies, prompt learning has
been applied to perform cross-lingual relation extraction [46], knowl-
edge transfer [47,48], few-shot dialog state tracking [49,50], and task-
oriented dialog domain adaptation [51].

Graph Prompting Methods. In contrast to conventional methods,
graph-prompting functions can induce task-specific contexts and apply
templates enriched in structured knowledge [52]. Liu et al. [53] intro-
duced a pre-training and prompting framework called GraphPrompt,
which integrates pre-training and downstream tasks within a unified
task template. Liu et al. [54] found that the incorporation of external
knowledge benefits commonsense reasoning and developed generated
knowledge prompting from a language model to provide additional
knowledge when answering a question.

Inspired by the excellent performance of graph-prompting methods,
we propose a dialog graph-enhanced prompt-learning approach for the
KGs-based ConvQA. In a ‘‘pre-trained, prompt, and predictive ’’ manner,
the proposed DANTE model simultaneously captures the semantic ben-
efits of sequential and structural information to improve the selection
performance of high-quality answers.

3. Approach

3.1. Notation

Before introducing our approach, we first list DANTE’s notation
and meaning in terms of four aspects: conversation, knowledge graph,
conversation graph, and model, as shown in Table 1. For the KGs-based
ConvQA task, given a KG denoted by 𝐾, a user request 𝑞𝑡, conversation
ontext 𝐶 𝑡, and context entity set 𝐸𝑡

𝑐 , all feasible paths  𝑡
𝑐 within the KG

are extracted. We model the problem as an information retrieval task
that requires a score and rank  𝑡

𝑐 to select the most relevant context
paths 𝑝𝑡𝑐 ∈  𝑡

𝑐 that result in entities or literals that correspond to the
correct answer 𝑎𝑡 as the answer to the question 𝑞𝑡.

3.2. Model overview

In a KGs-based ConvQA task, the input data include question 𝑞𝑡

and answers 𝑎𝑡 that are extracted from the KG. The proposed DANTE
generates answers according to the following four steps: (1) The entire
conversation history sequences 𝑠𝑡 with prefix prompts and the dynamic
dialog graph 𝑡 are taken as model inputs. (2) The dialog representation
𝑡′ is learned using the topic classification task. (3) The dialog topic
information is used, and 𝑠𝑡 is encoded,  is encoded as 𝑠𝑡′,  ′

𝑐 is
ncoded to calculate each candidate KG path via the cosine similarity
nd ranking it to select the answer from the highest-scoring path. (4)

fluent answer is generated via the PLM decoder with sequential
𝑡′ 𝑡′
3

nformation 𝑠 and learned structure information  simultaneously.
able 1
otation used herein and their meanings.

Notation Meaning

Conversation

 Conversation context
𝑡 Dialog turn
𝑞𝑡 Question at turn 𝑡
𝑎𝑡 Answer at turn 𝑡
𝑡 Interaction history of  at turn 𝑡

Knowledge Graph

 Knowledge graph
 Entities
 + Triples
𝑐 Context KG paths
𝑡+ Set of positive context paths for 𝑞𝑡

𝑡− Set of negative context paths for 𝑞𝑡

Dialog Graph

𝑡 Dialog graph at turn 𝑡
 𝑡
 Turn-level vertex at turn 𝑡

 Dialog-level vertex representing entire
dialog history

 𝑡
 Vertex in  at turn 𝑡

 𝑡
 Vertex representing current focal entity

Model

𝑠𝑡 Input sequence (contains 𝑡 and 𝑞𝑡)
𝜃𝑝 Prompt learning parameter
𝑠𝑡 ′ Embedding of input sequence 𝑠𝑡

 ′
𝑐 Embedding of context KG paths 𝑐

𝑡 ′ Embedding of dialog graph 𝑡

𝜙 𝑡 ′ Joint embedding for 𝑠𝑡 and 𝑡

𝜙𝑐
′ Joint embedding for 𝑐

Three tasks are jointly trained in an end-to-end manner, as shown
in Fig. 2, which includes a fluent answer-generation task, a contrastive
KG-path ranking task, and a topic classification task. Furthermore,
the implementation choices of the PLM (e.g., GPT2 [55]) or topic
classification GNN (e.g., GCN [56]) are used for training and empirical
effectiveness using appropriate techniques proposed to solve the sub-
tasks in DANTE, such that the approach can be implemented with other
choices.

3.3. Dialog graph construction

Graph Definition. Dialog graphs contain explicit relationships amo
g QA pairs, relevant KG paths, and dialog histories. From a technical
erspective, the essence of a dialog graph is multi-hop reasoning and
uestion-context-KG co-reference. Inspired by Guo et al. [33], we ad-
ress this problem by adaptively capturing the related question-context
nd question-KG cues in the dynamic co-reference mode. Four types of
odes are defined: (1) the KG node  𝑡

, which represents entities  in
the KG ; (2) the turn-level node  𝑡

 that represents the conversation
interaction history with the question-and-answer information at each
dialog turn 𝑡; (3) dialog-level node  𝑡

, representing all the dialog
histories since turn 1 to turn 𝑡; (4) focal entity node  𝑡

 , representing
the current focal entity, which should also be updated to follow the rule
of having only one focal entity node in each graph.

To connect these nodes dynamically, four types of edges are defined.
(1) Focus edges are undirected edges between a focal entity and its one-
hop neighbors to establish the connection between the dialog context
nodes  𝑡

 and  𝑡
. (2) Context dependency edges are directed edges

between turn-level nodes, from a newer node  𝑡
 point to the referred

dependency turn-level node, e.g.,  𝑡−1
 for adding an ellipsis to 𝑞𝑡. (3)

Dialog edges are dual-directed edges between turn-level nodes  𝑡
 and

 𝑡
,  𝑡

 , and  𝑡
 for representing and tracking the dialog topic. (4) Argu-

ment edges are undirected edges between KG nodes  𝑡
 for exploiting

deep KG paths. An example of a vivid dialog graph corresponding to
Fig. 1 is presented in Fig. 3.

Feature Representation. The four types of nodes in the dialog
graph originate from different concepts that require varying rules for
embedding initialization.

For turn-level nodes  𝑡
 , we concatenate the question and answer
sequences at the current turn 𝑡 with special tokens to generate the
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Fig. 2. DANTE architecture. Three types of embeddings are sent into the encoder as the input: (1) KG paths, (2) a dialog graph, and (3) the conversational sequence. DANTE
follows a multi-task learning paradigm jointly trained from three sub-tasks, including contrastive KG-path ranking, topic classification, and fluent answer generation. The optimal
objective  is derived through a careful balancing of the optimization weights among the three components, thus enhancing and maximizing the final answer output performance.
QApair sequence 𝑠𝑞𝑎, which is then fed into the PLM to encode turn-
level information. We only use embedding at the [𝑐𝑙𝑠] index, while
considering its consistent dimensions with other graph nodes and its
comprehensive context representation at each turn.

𝑠𝑡𝑞𝑎 = [[𝑐𝑙𝑠], 𝑞𝑡, [𝑠𝑒𝑝], 𝑎𝑡, [𝑒𝑜𝑠]] (1)

For dialog-level nodes  𝑡
, an initial embedding is randomly as-

signed with an invariant random seed to enable adequate learning of
additional information from other nodes during the message-passing
process. The dialog-level node is connected to the majority of the nodes
in the dialog graph, therefore, it can develop a global representation
of the graph. Here, we introduce a topic classification subtask to
efficiently guide the GNN learning process. Topic classification in-
corporates dialog-level node embedding after message passing, which
effectively enhances the primary task with an appropriate weight.
Further experiments demonstrate that this sub-task can be considered
a ‘‘prompt tuning’’ for the ranking and generation object.

For KG nodes  𝑡
 and focal nodes  𝑡

 , we use the prefix template
 𝑡
′ and  𝑡

 ′ to prompt the PLMs to encode their embedding, and for
a dialog-level node  𝑡

, we use a topic word token to initialize it.
The corresponding details are presented in the following section. The
feature representations can then be formulated as follows:

𝑡′ = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫(𝑠𝑡𝑞𝑎,
𝑡
′,

𝑡
 ′,

𝑡
) (2)

Graph Representation.With graph definition and feature represen-
tation, dialog graph representation was learned in two steps: (1) dialog
graph construction and (2) message passing.

Dialog graph construction is considered to be a dynamic evolving
process in which links between specific nodes  can be obtained by
updating the corresponding positions in the adjacency matrix 𝑑𝑗 ∈
R𝑁∗𝑁 . 𝑁 denotes the nodes in the Dialog Graph. Algorithm 1 outlines
the high-level pseudo-code for the step-by-step building process of the
dialog graph 𝑡.

For messages passing through the dialog graph, we employed the
state-of-the-art GNN model GAT. Each node learns features from its
neighbors with different attention levels by traversing the dialog inter
action–focus transitions turn-by-turn. The message-passing procedure
can be calculated as follows:

𝑡′ = 𝐆𝐀𝐓(𝑡′, 𝑑𝑗𝑡) (3)
4

Fig. 3. Dialog graph representation of Q5 in Fig. 1. Context dependency is represented
with directed edges between turn-level nodes, and KG entities are connected by
undirected edges. The dialog node indicated in cyan connects turn nodes and the focal
entity Moby-Dick node with dual directed edges.

where 𝑑𝑗𝑡 is the adjacency matrix of the dialog graph at turn 𝑡.

3.4. Prompt engineering

In this study, we designed hard and soft prompts for contrastive
ranking and fluent answer generation tasks.

Hard Prompt for Language Model Inputs. As shown in Fig. 2, the
language model input comprises three parts: KG paths, conversational
history sequences, and dialog graphs.

(1) KG paths are input to obtain a representation for every 𝑐 ∈
{𝑡+ ∪ 𝑡−}. In this context, we identify the entities 𝑐 and extract
possible candidates for KG paths, which is similar to the approach
described in Kaiser et al. [12]. To preserve the original KG path
information, the triples  + are concatenated with special tokens and
fed into the PLM to encode the sentence embedding  ′

𝑐 :

 ′
𝑐 = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫([[𝑐𝑙𝑠],  +

1 , [𝑠𝑒𝑝],  +
2 , [𝑠𝑒𝑝],… ,  +

𝑛 ]) (4)

(2) Conversational history sequences serve as the input for the
PLM to produce fluent answers in an end-to-end fashion. Specifically,
the conversation sequence 𝑠𝑡 comprises the entirety of the historical
QA pairs along with the current question 𝑞𝑡. This comprehensive struc-
ture enables the efficient organization of the question–answer prompt
template, as outlined in Eq. (5). Subsequently, this prompt template is
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input into the PLM, which encodes it into a sentence embedding 𝑠𝑡′ and
enerates a fluent answer sequence 𝑎𝑡′.

𝑡′ = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫([[𝑐𝑙𝑠], 𝑞1, [𝑠𝑒𝑝], 𝑎1, [𝑠𝑒𝑝],… , 𝑞𝑡, [𝑚𝑎𝑠𝑘]]) (5)
𝑡′ = 𝐏𝐋𝐌𝐃𝐞𝐜𝐨𝐝𝐞𝐫(𝑠𝑡′) (6)

(3) Dialog graph 𝑡. In the previous section, three types of nodes
ere defined using prompt templates to obtain improved initial node

eature embeddings. For turn-level nodes  𝑡
 , we organized them in

a turn-level question–answer prompt template and fed them into the
PLM to obtain a node embedded at the [𝑚𝑎𝑠𝑘] token position (only
the current turn question). For the focal entity nodes and KG entities,
the triple 𝜏 ∈ 𝑡+ in the current dialog graph is used to formulate a
head-predict-object prompt template. 

 𝑡


ℎ𝑒𝑎𝑑 and 
 𝑡


𝑝𝑟𝑒𝑑𝑖𝑐𝑡 denote the head
ntity and predicate in the triples where the object is  𝑡

 . Meanwhile,


 𝑡


ℎ𝑒𝑎𝑑 and 
 𝑡


𝑝𝑟𝑒𝑑𝑖𝑐𝑡 represent the head entity and predicate in the triples
where the object is  𝑡

. These entities are all from the context KG paths
𝑐 corresponding to the current turn of the answer 𝑎𝑡′. The prompt
template is then fed into the PLM to obtain a node feature embedded
at the [𝑚𝑎𝑠𝑘] token position. For dialog-level nodes,  𝑡

 is a randomly
initialized encoding, as mentioned previously.

 𝑡

′ = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫([[𝑐𝑙𝑠], 𝑞𝑡, [𝑠𝑒𝑝], 𝑎𝑡, [𝑚𝑎𝑠𝑘]]) (7)

 𝑡

′ = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫([[𝑐𝑙𝑠], 

 𝑡


ℎ𝑒𝑎𝑑 , 
 𝑡


𝑝𝑟𝑒𝑑𝑖𝑐𝑡, [𝑚𝑎𝑠𝑘]]) (8)

 𝑡

′ = 𝐏𝐋𝐌𝐄𝐧𝐜𝐨𝐝𝐞𝐫([[𝑐𝑙𝑠], 

 𝑡


ℎ𝑒𝑎𝑑 , 
 𝑡


𝑝𝑟𝑒𝑑𝑖𝑐𝑡, [𝑚𝑎𝑠𝑘]]) (9)

Algorithm 1: Dialog Graph Construction
input : Question 𝑞𝑡, answer 𝑎𝑡, KG triples  +, positive context

paths +, negative context paths −, and entity
dictionary 𝐸𝐷

output: Dialog graph 𝑡
1 initialize Dialog graph 𝑡 with turn-level context nodes  ,

dialog-level nodes , and entities  in QA pairs;
2 repeat
3 //create connection between  𝑡

 and 
4 add new  𝑡

 node and edge ( 𝑡
 , ) to 𝑡 at turn 𝑡;

5 //create connection between  nodes
6 update entity dictionary 𝐸𝐷 for each  node and all

entities detected in (𝑞𝑡 ∪ 𝑞𝑡−1 ∪ 𝑎𝑡−1);
7 for 𝑘

 , entity 𝑘 ← 𝐸𝐷 do
8 if entities of  𝑡

 in 𝑘 then
9 add edge ( 𝑡

 , 𝑘
 ) to 𝑡;

10 set the direction of the edge from  𝑡
 to 𝑘

 ;
11 end
12 end
13 //update focal entity
14 if new entity  𝑡 occurs in (+ ∩  𝑡

 ) then
15 set  𝑡 as the focal entity  𝑡

 and update the focal entity
representation;

16 add edges ( 𝑡
,  𝑡

) and ( 𝑡
, )

17 else
18 set the focal entity  𝑡−1

 as the focal entity  𝑡
;

19 add edge ( 𝑡
,  𝑡

);
20 end
21 //expand candidate KG paths
22 add two-hop neighbor nodes and edges of  𝑡

 in the KG
paths ⊆ {𝑡+, 𝑡−} to 𝑡 ;

23 until there is no  to add or 𝑡 is sufficiently large;

Soft Prompt for Contrastive Ranking Embeddings. To achieve
he objective of high-quality answer selection, we use a contrastive
anking task such as PRALINE [14] and improve its effectiveness with
5

soft prompt tuning params. As illustrated in Fig. 2, for the contrastive
learning process, the features produced by the PLM are all frozen, and
a learnable prompt vector 𝜃𝑝 and readout operation are introduced to
generate a subgraph representation for both contrastive sizes [53]. This
intuitively enhanced the ability to learn a better representation and
rich semantic information, which proved to be effective in our ablation
study experiment.

 𝑡

′ = 𝐑𝐞𝐚𝐝𝐎𝐮𝐭([𝜃𝑝 ⊕  𝑡


′]) (10)

𝑡′ = 𝐑𝐞𝐚𝐝𝐎𝐮𝐭( ⋅ [𝜃𝑝 ⊕ (𝑠𝑡′;𝑡′)]) (11)

The ⊕ is a plus operation. The ReadOut operation used is a sigmoid
unction that can be replaced by other activation functions.

.5. Dialog-graph-enhanced multi-task prompt learning

As discussed in Section 4.1, DANTE consists of three modules to
hich a joint objective loss function can be applied.
Topic Classification Task. For the topic classification task, we used

GAT network for message passing and trained it in a dialog graph
ode classification manner. At time step 𝑡, the GAT model input was
node feature set ℎ = {ℎ⃗1, ℎ⃗2,… , ℎ⃗𝑁}, ℎ⃗𝑖 ∈ 𝐑𝐹 , which was obtained

rom 𝑡. 𝑁 denotes the number of KG nodes, the maximum of which is
redefined based on the training data. 𝐹 denotes the number of features
n each node. In particular, we observed that the two-graph attention
ayer GAT exhibited the best performance, mainly because the two-
op neighbor had the greatest impact on the topic classification task.
fter the message passing with 𝑑𝑗𝑡 in GAT, the node feature ℎ′ is
ggregated as follows:

′⃗
𝑖 = 𝜎( 1

𝐾

𝐾
∑

𝑘=1

∑

𝑗∈𝑁𝑖

𝛼𝑘𝑖𝑗𝐖
𝑘ℎ⃗𝑖) (12)

The dialog node feature is then fed into a Softmax layer to learn
he topic classification. In ConvQuestions and ConvRef, we take the
ive domains (music, movie, tv_seris, soccer, and books) as the topic
ocabulary 𝑉 𝑇 𝑜𝑝𝑖𝑐 = {𝑇1, ..𝑇𝑚} for each conversation. The loss object of
he topic classification task is formulated as follows:

𝑡𝑐 = −
𝑚
∑

𝑗=1
𝑙𝑜𝑔𝑝(𝑦𝑇 𝑜𝑝𝑖𝑐𝑗 |ℎ⃗′𝑖) (13)

here 𝑦𝑇 𝑜𝑝𝑖𝑐𝑗 ∈ 𝑉 𝑇 𝑜𝑝𝑖𝑐 = {𝑇1, ..𝑇𝑚} denote the gold labels.
Contrastive KG-path Ranking Task. The contrastive ranking mod-

ule proposed by Kacupaj et al. [27] is used by employing two identical
sequential networks to produce combined embeddings for  𝑡′ and  𝑡′

at turn 𝑡, where both sides contain a two linear layers feedforward
network with a 𝑅𝑒𝑙𝑢 activation and are appended with a 𝑡𝑎ℎ𝑛 non-
linear layer. During the training procedure, the module calculates the
cosine similarity among all the potential candidates within the current
batch. The two feedforward networks are trained collaboratively to
enhance the similarity for the correct pairs and diminish the similarity
for incorrect pairs. The loss object of the contrastive ranking task is
formulated as follows:

𝑟𝑘 =

{

1 − 𝑐𝑜𝑠(𝜙 𝑡′ , 𝜙 𝑡′ ), 𝑖𝑓 𝑦(𝑟𝑘) = 1,
𝑚𝑎𝑥(0, 𝑐𝑜𝑠(𝜙 𝑡′ , 𝜙 𝑡′ ) − 𝛼) 𝑖𝑓 𝑦(𝑟𝑘) = −1

(14)

where 𝑦(𝑟𝑘) ∈ {1,−1} is the ground truth label for the ranking module.
𝑐𝑜𝑠(≐) refers to the normalized cosine similarity, and 𝛼 is the margin.
𝜙 𝑡′ is the joint embedding for 𝑠𝑡 and 𝑡, and 𝜙𝑐

′ is the joint embedding
for 𝑐 .

Fluent Answer Generation Task. Fluent answers are typically
generated based on the PLM sequence generation process, which is
regarded as a fundamental training task of the PLM. The loss object
can be formulated as

𝑑𝑒𝑐 = −
𝑛
∑

𝑙𝑜𝑔𝑝(𝑦𝑑𝑒𝑐𝑙 | 𝑠,) (15)

𝑙=1
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Table 2
Statistics of ConvQuestions and ConvRef datasets. ConvRef is an extension of
ConvQuestions.

statistic ConvQuestions ConvRef

Number of domains 5 5
Number of dialogs 11 200 11 200
Number of reformulations – 205 000
Training-dev-test split 6720/2240/2240 6720/2240/2240
Number of turns per dialog 5 5
Total number of turns 56 k 262 k

where 𝑦𝑑𝑒𝑐𝑙 ∈ 𝑉 (𝑑𝑒𝑐) are the gold labels used to generate 𝑎 for the
decoder

A joint learning object was applied to the three tasks. To train all
the modules and tasks simultaneously, we used a weighted average of
individual losses formulated as follows:

 = 𝜆1 ⋅ 𝑟𝑘 + 𝜆2 ⋅ 𝑡𝑐 + 𝜆3 ⋅ 𝑑𝑒𝑐 (16)

𝜆1, 𝜆2, 𝑎𝑛𝑑𝜆3 are the hyperparameters for adjusting the bias of the
modules in DANTE during the training process.

4. Experiments

4.1. Datasets

In this study, we focused on a KGs-based ConvQA task and con-
ducted experiments on two large-scale multi-domain datasets: Con-
vQuestions and ConvRef. ConvQuestions, a ConvKBQA dataset created
on Wikidata by crowdworkers on Amazon Mechanical Turk, comprises
11,200 dialogs over five domains: ‘‘Movies’’, ‘‘TV Series’’, ‘‘Music’’,
‘‘Books’’, and ‘‘Soccer’’. Each conversation has a five-turn conversation
with its ground-truth answers. ConvRef builds on the aforementioned
dataset ConvQuestions by incorporating reformulations. It consists of
11,200 conversations with approximately 205,000 reformulations. The
average reformulation length was approximately 7.6 words, whereas
the initial questions per session had an average length of approximately
6.7 words. Both the datasets were divided into 6720, 2240, and 2240
data for the training, validation, and testing, respectively.(see Table 2).

4.2. Implementation & training details

We used the BART-based model as our PLM encoder–decoder model
with a dropout of 0.1 and set the word embedding dimension (𝑑 = 768),
and the number of layers (𝐿 = 2) of our GAT module. With the dropout
rate set as 0.2 for each layer, the node feature dimensions were set
to be the same as the word-embedding size (𝑑 = 768). During the
training process, we restricted DANTE’s input sequence size to 150
tokens, which was sufficient for our task. For topic classification and
generation sub-tasks, we select the relative weights 𝜆2 and 𝜆3 from
{0.25, 0.1, 0.05}. For the cosine embedding loss in the path ranking, we
employ a margin of 𝛼 equal to 0.1 and a relative weight 𝜆1 of 1.0. We
set the batch size as 64 and the learning rate from the {1e-3, 1e-4, 2e-
5} optimizer using a Single GPU (NVIDIA V100 GPU), which required
∼48 h after ∼150 epochs for ConvQuestions and ∼5 days after ∼300
epochs for ConverRef to achieve the best performance.

4.3. Baselines

The proposed DANTE model was compared with the following
state-of-the-art methods that were most relevant to our approach.

∙ CONVEX [1]: It infers the missing parts of the incomplete ques-
tions with the conversation history and then uses a graph explo-
ration algorithm to search for candidate answers.

∙ FOCAL ENTITY [9]: It is a graph-based model focused on the
transitions of implied entities from the conversation history.
6

Fig. 4. DANTE’s ranking performance on all the five domains in terms of H@5
and H@10. The model achieves the best results in the Books domain on both the
ConvQuestion and ConvRef datasets, and the blue and red columns represent H@5 and
H@10, respectively.

∙ OAT [11]: This method defines a new logical form (LF) grammar
and incorporates conversational contexts and KGs.

∙ CONQUER [12]: It relies on reinforcement learning and uses im-
plicit negative feedback that arises when users rephrase questions
that were unsuccessful in previous attempts.

∙ PRALINE [14]: It formulates KGs-based ConvQA as a KG path
ranking problem and models the conversational context and KG
paths to jointly learn embedding representations.

∙ KRR [57] : This method first rewrites the question based on the
historical conversation with the supervision of transferring the
knowledge base and then runs over the knowledge base to obtain
the answer.

∙ EXPLAIGNN [39]: With heterogeneous graph neural networks
that incorporate question-level attention, EXPLAIGNN obtains
competitive performance. Moreover, integrating heterogeneous
sources (KB, text, tables, and infoboxes) into the heterogeneous
graph can substantially improve the answer performance.

4.4. Metrics

To evaluate the model performance on a KGs-based ConvQA task,
we employed the same metrics as in previous studies. Firstly, we used
Precision at 1 (P@1) to report the proportion of precise top-ranked
answers. We also used the mean reciprocal rank (MRR) and Hit at
5 (H@5), which is the proportion of correct answers in the top five
positions. The precision, recall, and F1 scores were used to conduct
the domain identification task, and BLEU-4 and METEOR were used
for answer generation.

4.5. Results

Overall Performance on ConvQuestions and ConvRef datasets.
Table 3 provides a summary of the results, offering a comparison
between DANTE and previous baseline methods. DANTE outperformed
the baselines in almost all the metrics for both datasets. Here, we intro-
duce the EXPLAIGNN, the latest but not officially published approach.
Specifically, for P@1, DANTE achieved the third-best performance. For
H@5 and MRR, the margins are prominent, with 4.9% and 3.6% points
better than the latest EXPLAIGNN on ConvQuestion. On the ConvRef
dataset, DANTE outperforms CONVEX, CONQUER, and PRALINE across
all the metrics, where the margin for all the metrics is more than 2%
absolute points. Moreover, it surpasses PRALINE on P@1 and MRR by
7.1% and 8.2% points, respectively.
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Table 3
Overall results on the two datasets. The incorporation of the dialog graph and prompt learning within the DANTE
framework yielded notable improvements in empirical outcomes. These enhancements resulted in superior results
compared to the majority of the baseline methods. The EXPLAINGNN (heterogeneous sources) uses additional
information to realize a better performance. The best values are indicated in bold.

Dataset ConvQuestions ConvRef

Model P@1 H@5 MRR P@1 H@5 MRR

CONVEX [1] 0.184 0.219 0.200 0.225 0.257 0.241
FOCAL ENTITY [9] 0.248 0.248 0.248 – – –
OAT [11] 0.166 – 0.175 – – –
OAT [11] (gold seed entity) 0.250 – 0.260 – – –
CONQUER [12] 0.240 0.329 0.279 0.353 0.429 0.387
PRALINE [14] 0.294 0.464 0.373 0.335 0.599 0.441
KRR [57] (gold seed entity) 0.397 0.397 0.397 – – –
EXPLAIGNN [39] (KB-only) 0.330 0.480 0.399 – – –
EXPLAIGNN [39] (heterogeneous sources) 0.363 0.546 0.447 – – –

DANTE 0.352 0.595 0.483 0.406 0.619 0.523
Table 4
Detailed outcomes across various domains within both benchmarks, assessed using ranking metrics. DANTE achieves better
results in eight of ten scenarios. The best values are indicated in bold.
Dataset ConvQuestions

Domain Movies TV Series Music Books Soccer

Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR

CONVEX [1] 0.355 0.305 0.269 0.218 0.293 0.237 0.303 0.246 0.284 0.234
CONQUER [12] 0.357 0.316 0.382 0.325 0.320 0.263 0.464 0.417 0.310 0.268
PRALINE [14] 0.561 0.426 0.457 0.378 0.405 0.279 0.739 0.599 0.492 0.344

DANTE 0.621 0.530 0.550 0.484 0.500 0.365 0.763 0.626 0.538 0.408

Dataset ConvRef

Domain Movies TV Series Music Books Soccer

Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR

CONQUER [12] 0.436 0.405 0.442 0.392 0.398 0.357 0.554 0.502 0.360 0.316
PRALINE [14] 0.567 0.429 0.545 0.466 0.495 0.329 0.835 0.659 0.564 0.378

DANTE 0.589 0.531 0.584 0.525 0.555 0.410 0.832 0.720 0.533 0.427
Ranking Performance Across Domains. In addition, we explored
the ranking performance of DANTE across various domains within
both benchmarks. Table 4 lists the comprehensive ranking outcomes
for the metrics H@5 and MRR, both of which are ranking evaluation
measures. On the ConvQuestions benchmark, DANTE outperforms on
every domain by at least 2.4% points on H@5 and 2.7% points,
which proves that DANTE facilitates the retrieval of more relevant
and high-quality answers, owing to its effective modeling of the KG
paths and conversational history interactions simultaneously with a
deep ‘‘prompt’’ manner. On the ConvRef benchmark, DANTE still out-
performs in the majority of domains and approaches the best results of
the SOTA method. Our model is also competitive from both sides of the
metrics H@5 and MRR.

Fig. 4 presents the ranking results for the H@5 and H@10 ranking
metrics. DANTE achieves the best result in the ‘‘Books’’ domain, with
H@10 of 0.857 on the ConvRef benchmark, while achieving the lowest
scores in the ‘‘Music’’ domain. The results for H@5 and H@10 were
consistently favorable across the majority of domains, suggesting that
DANTE exhibits a tendency to rank accurate paths at the forefront of
the list, thus showcasing the resilience of our approach.

In conclusion, the use of a dialog graph enhanced prompt learning
on contrastive learning to rank KG paths positively impacts the overall
empirical performance of DANTE. Furthermore, as illustrated in the
following section, a dialog graph with prompts plays a significant role
in substantially improving the results.

4.6. Ablation study

To explore the effectiveness of DANTE, we performed various ab-
lation studies from the perspective of the three sub-tasks and reported
the results in Table 5.
7

Table 5
Effectiveness of dialog graph, prompted fluent generation, and joint learning. The first
row (from top) presents the results of DANTE with all available modules. The second
row removes the dialog graph module. The third row removes the fluent answer
generation with the prefixed ‘‘prompt.’’ In the last row, we present the outcomes
achieved when training the modules separately, thus highlighting the benefits of
collaborative training.

Dataset ConvQuestion

Model P@1 H@5 MRR

DANTE 0.352 0.595 0.483

w/o Dialog Graph 0.290 0.489 0.398
w/o Fluent Generation 0.324 0.531 0.426
Train Separately 0.269 0.455 0.385

Effect of Dialog Graph. We first study the empirical advantage of
the dialog graph that models the QA pairs, conversation interactions,
and KG paths, which is designed to empower a deep, explicit, and
semantic-rich representation for the downstream tasks with a ‘‘pre-
train, prompt, predict’’ manner in our approach. Hence, we created a
DANTE configuration (w/o Dialog Graph) to train the model without a
dialog graph module (dialog graph and GAT). As a result, an obvious
decrease is observed in the performance of DANTE (without a dialog
graph), which demonstrated that DANTE is an effective method for
KGs-based ConvQA tasks.

Effect of Fluent Answer Generation. Generation task with pre-
fixed ‘‘prompt’’ inputs is also a key component. To demonstrate the
effectiveness of fluent answer generation with prefixed ‘‘prompt’’ in-
puts, we conducted an ablation experiment by eliminating them and
instead using standalone answers extracted directly from the knowl-
edge graph (w/o Fluent Generation). As illustrated in Table 5, we
obtained decreases of 2.8% for P@1, 6.4% for H@5, and 5.7% for
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Table 6
Representative cases of DANTE on ConvQuestions. The numbers above the arrows denote different property paths over the KG.

Case Conv. ID Question Topic KG Paths Answer Generation

1 11200-2 Where was he
born?

ground_truth: soccer
prediction: soccer
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘Lionel Messi’’ ⟶ ‘‘Rosario’’ 𝑃@1: "𝐻@5: "𝐻@10: " reference: he was born with [ans]
prediction: he was born in [ans].
𝐵𝑙𝑒𝑢2 : 0.51

2 8963-4 What is the name
of the second
movie?

ground_truth: movies
prediction: movies
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘Grease’’
1

⟶ ‘‘Grease2’’
gold path 2: ‘‘Grease’’

2
⟶ ‘‘Grease2’’

𝑃@1: "𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

reference: [ans] is the name of the second
movie.
prediction: the name of the second movie is
[ans].
𝐵𝑙𝑒𝑢2 : 0.79

3 8962-0 What network was
Dexter on?

ground_truth: tv_series
prediction: tv_series
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘Dexter’’
1

⟶ ‘‘showtime’’
gold path 2: ‘‘Dexter’’

2
⟶ ‘‘showtime’’

gold path 3: ‘‘Dexter’’
3

⟶ ‘‘showtime’’

𝑃@1: %𝐻@5: "𝐻@10: "

𝑃@1: "𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

reference: magazine first published the
book is [ans]
prediction: [ans] first published the book.
𝐵𝑙𝑒𝑢2 : 0.71

4 8962-4 What was the main
location of it?

ground_truth: tv_series
prediction: tv_series
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘Dexter’’
1

⟶ ‘‘Miami’’
gold path 2: ‘‘Dexter’’

2
⟶ ‘‘Miami’’

gold path 3: ‘‘Dexter’’
3

⟶ ‘‘Miami’’

𝑃@1: "𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

reference: the main location of it was
[ans].
prediction: [ans] was the actress.
𝐵𝑙𝑒𝑢2 : 0.01

5 9438-0 Who wrote Harry
Potter?

ground_truth: books
prediction: books
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘Harry Potter’’
1

⟶ ‘‘J.K.Rowling’’
gold path 2: ‘‘Harry Potter’’

2
⟶ ‘‘J.K.Rowling’’

gold path 3: ‘‘Harry Potter Character’’ ⟶ ‘‘J.K.Rowling’’

𝑃@1: %𝐻@5: %𝐻@10: %

𝑃@1: %𝐻@5: "𝐻@10: "

𝑃@1: "𝐻@5: "𝐻@10: "

reference: [ans] wrote harry potter.
prediction: [ans] wrote harry potter .
𝐵𝑙𝑒𝑢2 : 1.0

6 10033-4 Who is the
protagonist?

ground_truth: books
prediction: books
𝑖𝑠𝑅𝑖𝑔ℎ𝑡: "

gold path 1: ‘‘The Catcher in the Rye’’
1

⟶ ‘‘Holden Caulfied’’
gold path 2: ‘‘The Catcher in the Rye’’

2
⟶ ‘‘Holden Caulfied’’

gold path 3: ‘‘The Catcher in the Rye’’
3

⟶ ‘‘Holden Caulfied’’
gold path 4: ‘‘The Catcher in the Rye’’

4
⟶ ‘‘Holden Caulfied’’

gold path 5: ‘‘J.D. Salinger’’ ⟶ ‘‘Holden Caulfied’’

𝑃@1: %𝐻@5: %𝐻@10: %

𝑃@1: %𝐻@5: "𝐻@10: "

𝑃@1: "𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

𝑃@1: %𝐻@5: "𝐻@10: "

reference: [ans] is the protagonist.
prediction: [ans] is the protagonist.
𝐵𝑙𝑒𝑢2 : 1.0
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MRR, where the statistics are presented as the average of experiments
conducted more than ten times. The empirical results demonstrate
that fluent answer generation with prefixed ‘‘prompt’’ inputs can learn
more comprehensive commonsense from PLM and provide additional
context information to support DANTE to generate a more accurate
representation for the contrastive ranking task. Hence, we conclude
that this module positively impacts the KG path ranking and topic
classification tasks.

Effect of Multi-task Joint Learning DANTE is trained in a multi-
ask manner, therefore, the effectiveness of the three sub-tasks and the
ulti-object is required to be explored. To explore the effectiveness of
ulti-task joint learning, we independently trained each module with-

ut any parameter sharing between the sub-modules, the corresponding
utcomes are detailed in Table 5. DANTE (Train Separately) presents
ower scores for all the metrics. Moreover, we observed that all the
odules could fall into overfitting compared with joint training, thus

llustrating that DANTE generates superior embedding representations
hat comprehensively capture all the tasks and can learn deeper cogni-
ive information for downstream tasks, thereby avoiding the occurrence
f overfitting.

.7. Case study

We demonstrate six examples from different topics and conversation
urns of the results on ConvQuestions, as listed in Table 6. For Cases 1
nd 2, which are simple cases in the middle of the dialog turn, DANTE’s
redictions are perfect for supporting a dialog-evolving process. For
ases 3 and 4, which originated from conversation 8962, the focal
ntity at turn 1 is ‘‘Dexter’’ after four dialog interaction turns. It changes
ack to ‘‘Dexter’’ at turn 5. DANTE also selects and ranks the correct
G paths in order of high quality. Furthermore, in some complex cases,
s in Case 5, the KG paths begin from two entities while pointing
o the same target. DANTE ranks two of the three KG paths in the
orrect order. For Case 6, with five paths starting from different entities
ith different property paths, DANTE still ranks the most KG paths in
highly relevant order. It should be noted that the predicted topics

re all correct, and fluent Answers perform with high Bleu scores,
emonstrating that DANTE aggregates topic information from the right
irection and learns a semantic-rich graph representation of KGs-based
8

onvQA.
5. Conclusions and future work

We propose a novel dialog-graph-enhanced prompt learning method,
DANTE, which models a user’s intention and conversation historical
interaction records simultaneously and effectively. The dialog graph
constructed represents the QA pairs, KG paths, and dialog context de-
pendency in an explicit mode for selecting high-quality answers with a
‘‘pre-train, prompt, predict’’ training manner. The experimental results
demonstrate that DANTE significantly improves the KGs-based ConvQA
task performance on ConvQuestions and ConvRef compared with ex-
isting approaches. In our future work, we intend to explore whether
DANTE can be extended to multi-modal and cross-topic KGs-based
Conversation QA tasks by applying it to ConvMix [58]. Furthermore,
we are also interested in exploiting RL from human feedback [59] to
prompt more LLMs potentials as DANTE’s continuous work.
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