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Abstract. Multi-task learning (MTL) is effective in solving mul-
tiple related tasks simultaneously by sharing knowledge. However,
a key challenge hindering its applications is the task interference
problem where different tasks compete with each other, leading to
the gradients conflicts during optimization and suffering from nega-
tive transfer. One thread is to manipulate task gradients by adjusting
conflicting directions, ignoring architecture learning. Another thread
is to learn architectures by generating task-exclusive modules, ig-
noring all-task balances. We address the problem by proposing a
novel Multi-task Architecture learning model via Multi-Objective
(MAMO) optimization. It achieves the goal in two steps. First, for
the competing tasks detected during architecture learning, MAMO
automatically generates a new module of gradient mediative kernel
(GMK). Second, MAMO finds a Pareto optimal solution that bal-
ances all tasks during model parameter learning. MAMO outper-
forms various MTL baselines on benchmarks with an effective model
size. It is model-agnostic and can be integrated into other SOTA
methods to promote their performance. Extensive ablation study is
conducted to understand the working of MAMO.

1 Introduction

Multi-task learning exploits knowledge shared among related tasks
to improve the generalization performance of multiple tasks [1, 43].
MTL offers a dual advantage: it is not only minimizing the overall
training cost by learning multiple tasks concurrently, but also bol-
stering the performance of each individual task through the mutual
sharing of knowledge among various tasks. Successful applications
vary from computer vision [30, 8, 33, 39, 9] to natural language pro-
cessing [5, 12, 35] and multimodal learning tasks [29, 28, 40].

Compared to single-task learning, the simultaneous training of
multiple tasks can be challenging due to the task interference prob-
lem where tasks compete with each other, leading to gradients con-
flicts (see Fig. 1a). It is difficult to optimize the multitask objective
since the task of larger magnitude may dominate the update and has
negative effect on other tasks [42, 38]. It goes worse under the het-
erogeneous domains and distribution shift, suffering from negative
transfer where the performance drops on one task conditioned on the
learning of other tasks. Overall performance degenerates than that
of learning them independently [37, 16]. One thread of mitigating
conflicts is to manipulate gradients/ losses to make a balance among
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competing tasks. Gradient manipulation technique is to adjust gradi-
ents directions (see Fig. 1b), drop part of the gradient vectors, and
rotate shared features [41, 3, 15]. The reweighting technique is to
adaptively re-weight the loss functions by uncertainty, balance the
learning pace among tasks, and learn loss weights by dynamic weight
average [17, 2, 22].

The occurrence of gradient conflicts shows that not all tasks are
strongly related and the fixed human-designed network structures
like hard parameter sharing and soft parameter sharing could be
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Figure 1: Gradients conflicts and different mitigation methods. (a)
Two tasks (i, j) have conflicting gradients, i.e., their cosine simi-
larity is negative. (b) PCGrad mitigates the conflict by orthogonal
projections to adjust the gradient direction. (c) CoNAL mitigates the
conflict by generating task exclusive modules (parameterized with θi

and θj respectively) optimized with a linear weighted sum loss. (d)
Our MAMO mitigates the conflict by generating gradients mediative
kernel (GMK) modules (parameterized with θhi,j ) optimized with a
multi-objective loss (see full MAMO in Fig. 2).



improper for a given MTL problem [23, 27, 10]. Therefore, an-
other thread is to learn multitask architectures to mitigate task con-
flicts from the root [24, 36, 44]. Branch-based architecture learn-
ing methods automate to build a tree-structured network by learning
where to branch with task-specific modules and layer-wise replace-
ment [13, 32]. To kill two birds with one stone, a recent CoNAL
method [42] was proposed to mitigate gradient conflicts during
learning the architectures. The purely specific (task exclusive) mod-
ules (see Fig. 1c) are introduced as the candidate search space and
CoNAL adaptively switches to task-exclusive module when gradient
conflicts are detected during the architecture learning process.

Existing architecture learning methods (e.g. CoNAL) optimize a
weighted sum of empirical risks for multiple tasks, called linear
scalarization. In fact, the objective of MTL is to find solutions that
are not dominated by any others (called Pareto optimal) and the prob-
lem of finding such Pareto optimal is called multi-objective opti-
mization [31, 20, 25, 4]. Motivated by theoretical results [14] say-
ing multi-objective optimizers can find Pareto optimal solutions that
cannot be obtained via any linear scalarization objective, in this pa-
per, we address the problem from the perspective of multi-objective
optimization. To the best of our knowledge, we are the first to learn
MTL architectures under multi-objective optimization.

We propose a novel Multi-task Architecture learning method un-
der Multi-objective Optimization (MAMO). It achieves the goal
by finding a Pareto optimal solution to balance among competing
tasks, and generating mediative kernel modules to mitigate gradi-
ent conflicts during architecture learning. Instead of generating task-
exclusive modules as that of CoNAL, our introduced gradients me-
diative kernel (GMK) modules mitigate the conflicts in the new
high-dimensional joint space (see Fig. 1d). Operating on the GMK
modules, MAMO can adaptively fuse the shared knowledge and
dynamically learn to switch to task-specific modules during archi-
tecture learning. Besides theoretical-motivated advantages, MAMO
also empirically outperforms dozens of strong MTL baselines on two
benchmarks (the NYUv2 and Cityscapes datasets) with a reasonable
model size. It is model-agnostic and thus can easily plug-and-play
into SOTA methods to promote their performance.

The main contributions are summarized in the following:

• We propose a novel MAMO method—to the best of our knowl-
edge, we are the first—to learn Multitask Architectures from the
perspective of Multi-objective Optimization, well-motivated by
recent theoretical results.

• In MAMO, we introduce the gradients mediative kernel (GMK)
modules in the search space of neural architectures. It can adap-
tively fuse the shared knowledge and dynamically learn to switch
to task-specific modules.

• On two MTL benchmarks (NYUv2 and CityScapes), our MAMO
outperforms various strong baselines with a reasonable model
size. It can be integrated into SOTA methods to improve their per-
formance further.

2 Preliminary
Before introducing our proposed method, we first describe the prob-
lem setup of MTL and then introduce the background on Pareto op-
timality of multi-objective optimization.

2.1 MTL Setup

Consider a multi-task learning problem over an input space X and a
collection of m-sized task spaces {Yt}t∈[m], and a collection of N -

sized data samples {xi, y
1
i , . . . , y

m
i }i∈[N ] are also given where yt

i is
the label of the t-th task for the i-th data point.

Each task has a parametric hypothesis class as:

f t(x; θsh, θt) : X → Yt, (1)

where θsh corresponds to shared parameters across all tasks while
parameters θt are task-specific. The loss function of the t-th task is
denoted by:

Lt(·, ·) : Yt × Yt → R+. (2)

2.2 Multi-objective Optimization

Linear scalarization MTL can be formulated as linear scalariza-
tion (LS) optimization which uses the following linearly combined
weighted summation loss [42]:

min
θsh,∪t∈[m]{θt}

∑
t∈[m]

wtL̂t(θsh, θt), (3)

where wt is the weight for the t-th task and L̂t is the empirical loss
computed over the data samples using Lt.
Multi-objective MTL can also be formulated as multi-objective op-
timization which is to optimize a collection of possibly conflicting
objectives (reflecting the reality of multiple tasks are competing with
each other) denoted by a vector-valued loss [31]:

min
θsh,∪t∈[m]{θt}

L(θsh,∪t∈[m]{θt})

= min
θsh,∪t∈[m]{θt}

(
L̂1(θsh, θ1), . . . , L̂m(θsh, θm)

)⊤
.

(4)

The goal of multi-objective (MO) optimization is to achieve
Pareto optimality which can be solved to local optimality via gra-
dient descent methods, leveraging Karush-Kuhn-Tucker (KKT) con-
ditions [7]:
1. Exist a1, . . . , am ≥ 0, such that

∑
t∈[m] a

t = 1 and∑
t∈[m] a

t∇θsh L̂t(θsh, θt) = 0; (5)

2. For ∀t ∈ [m], ∇θt L̂t(θsh, θt) = 0.
The theoretical results [14] say, under some conditions, the lin-

ear scalarization is incapable of fully exploring the Pareto front, es-
pecially for those Pareto optimal solutions that strike the balanced
trade-offs between multiple tasks. Since our goal is to attack the
task interference and make a balance among all tasks, we address
the MTL architecture learning problem via multi-objective optimiza-
tion. Later in experiments, we will empirically ablate the impact of
LS and MO (see Sec. 4.4.2).

3 The MAMO Approach
In this section, we introduce the proposed MAMO method, including
the motivation of gradients mediative kernel (GMK) modules and the
strategy of mitigating gradient conflicts during architecture learning.
We finally analyze the complexity of the model and computation.

3.1 Search Space

Our MAMO method is to find an architecture that mitigate gradient
conflicts for multiple competing tasks in the search space. The core in
the search space is the gradients mediative kernel (GMK) modules,
each of which could be FC, Conv, or ResNet layer depending on



the given MTL problem. As a result, MAMO contains two kinds
of modules: the all-shared module and gradients mediative kernel
module, defined as:

• Definition 3.1 (All-shared module): It is used by all tasks and is
updated by the gradients backpropagated from the losses of all
tasks during the training.

• Definition 3.2 (Gradients mediative kernel module): It is used by
only part of tasks (they are conflicting detected during the archi-
tecture learning) and is updated solely by the gradients backprop-
agated from the losses of these tasks during the training.

Different from existing architecture learning methods like
CoNAL [42] which uses task-exclusive module when gradient con-
flicts are detected (see Fig. 1(c)), our MAMO mitigates the con-
flict by generating gradients mediative kernel (GMK) modules (see
Fig. 1(d)). One advantage of GMK module is to reserve knowledge
from all-shared modules instead of discarding them totally as that of
CoNAL. The reason is that although the conflicting gradients will in-
crease the training losses of conflicting tasks and slow down the con-
vergence speed, it may also play a role similar to regularization [19],
reducing the risk of overfitting of the conflicting tasks, thereby im-
proving their generalization performance [16].

We now provide a brief explanation on why the addition of GMK
module can mitigate the gradient conflicts. Assume two tasks (i, j)
are in conflict at some layer in the network, i.e., cos(gradi, gradj) <
0 or equivalently ⟨gradi, gradj⟩ < 0, where gradi represents the gra-
dient of i-th task at the corresponding conflicting layer. Assume the
shared parameters are θsh, then we have

〈
gradi(θ

sh), gradj(θ
sh)

〉
=

−c where c is a positive value since they are conflicting. When op-
erating on our introduced gradients mediative kernel (GMK) module
parameterized with θhi,j , we can divide the gradient vectors into two
components consisting of all-shared and GMK parts:

⟨gradi, gradj⟩ = ⟨gradi(θ
sh), gradj(θ

sh)⟩

+ ⟨gradi(θ
hi,j ), gradj(θ

hi,j )⟩

Since the first term (regarding all-shared part) on the right hand
equals −c, we only need to ensure that the second term (regarding
GMK part) ≥ c to mitigate the gradient conflicts. In fact, we have
more flexible operation space after the introducing of GMK mod-
ules: we only need to ensure the whole gradient vectors (the term on
the left hand) are not conflicting instead of requiring each of them
(all-shared part and GMK part) must be divided into −c and c. For
example, they can be divided into −c′ and c′ for tasks (i′, j′) where
c ̸= c′. The trade-off between sharing knowledge and task-specific
learning is dynamically optimized based on GMK modules. Theo-
retically, introducing GMK modules between conflicting tasks can
satisfy this condition and we will introduce the architecture learning
algorithm under multi-objective optimization in the next section.

3.2 Overall architecture

The overall architecture of MAMO is shown in Fig. 2a. For learning
m tasks with L-layer network, MAMO consists of: (ℓ indexes layer
and i, j index tasks in the following)

• an all-shared encoder network {f (ℓ)
S };

• task-specific encoder networks {h(ℓ)
i,j} implementing the gradients

mediative kernel modules (note the GMK modules have a sparse
structure described later in the Section 3.3);

• task-specific adaptive fusion layers with parameters {βi,j};
• task-specific decoder networks {gi} for corresponding task heads.

For the all-shared network {f (ℓ)
S }, their outputs is computed by:

oℓ+1
f = f

(ℓ+1)
S (oℓf ). (6)

For the task-specific encoder networks {h(ℓ)
i,j} implementing GMK

modules, their output is computed by:

oℓ+1
i,j = h

(ℓ+1)
i,j (oℓf , I

(ℓ)
i,j · oℓi,j), (7)

where the input to GMK consists of both shared knowledge oℓf and
task-specific gradients mediative information in preceding layer oℓi,j .
The core of architecture search is to determine I

(ℓ)
i,j , indicating the

gradient conflict detected between tasks (i, j) at the ℓ-th layer and
the corresponding mediative module is activated if and only if it is
one (details of search strategy described in the next section).

... ...

... ...

...

...

...

...

...

g1

y1
ˆ

mŷ
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(b) Adaptive fusion layer for the m-th task
Figure 2: Illustration of the proposed MAMO approach. (a) Overall
architecture of MAMO: fS is the shared module, hi,j is the gradients
mediative kernel (GMK) module, gm is the corresponding task head,
and the adaptive fusion layer is detailed in (b). (b) The task-specific
adaptive fusion module in MAMO: an example for the m-th task
where only the m-th row and the m-th column of the GMK matrix
are eligible for fusion.



For adaptive task-specific fusion layer {βi,j}m,m
i=1,j=1 connecting

the encoder networks and the decoder network, it adaptively fuses
the shared knowledge and task-specific information. Take the m-th
task for example as shown in Fig. 2b, its output is computed by:

ŷm = gm(oLf ,
∑
j∈[m]

βm,j︸ ︷︷ ︸
the m-th row

·I(L)
m,j · o

L
m,j ,

∑
i∈[m]

βi,m︸ ︷︷ ︸
the m-th col

·I(L)
i,m · oLi,m), (8)

where the diagonal elements of the fusion matrix {βi,i} are dummy
since a task is not conflicting with itself.

Algorithm 1 Multi-task Architecture learning via Multi-objective
Optimization (MAMO)
Input: D: Training samples, Z: Number of conflict detection
Output: Learned architecture parameters & model parameters

1: Initialize and pre-train all-shared modules;
2: for z = 1 to Z do
3: Sample a mini-batch from D;

// Learning architecture parameters
4: Compute conflicts indicator matrix I by Eq. (13);
5: Generate gradients mediative kernel (GMK) modules based

on the computed indicator;
// Learning model parameters

6: Compute losses and gradients of new KKT conditions shown
in Eq. (14);

7: Update model parameters using multiple-gradient descent al-
gorithm (MGDA) [7];

8: end for

3.3 Search Strategy

Introducing gradients mediative kernel (GMK) modules can miti-
gate task conflicting issues. After generating a GMK module, a new
Pareto stationary point will be reached. Thereby it may activate new
GMK modules along with the optimization going on. Therefore, we
detect gradient conflicts during architecture learning to dynamically
construct a conflicting indication matrix at each layer.

Formally, at the ℓ-th layer, the gradients cosine matrix {Ci,j} ∈
Rm×m stores the scores of gradient vectors where the element:

Ci,j = cos(gradi, gradj). (9)

The proxy conflicting matrix {Ĩi,j} represents the task conflicting
situation:

Ĩi,j =

{
0, Ci,j ≥ 0

1, Ci,j < 0.
(10)

Backpropagating all data samples to compute the gradients is com-
putational prohibitive. Therefore, we adopt the mini-batch training
trick to accumulate the gradient conflict indications on the fly:

Qi,j =
∑

mini-batch

Ĩi,j . (11)

Based on the accumulated conflict indications, we convert it to be
a zero-one indicator matrix by comparing with an average statistic:

Qaverage =
1

NZ

∑
i,j

Qi,j , (12)

where NZ is the number of non-zero elements in Q. The setting of
the indicator matrix is thus by:

Ii,j =

{
0, Qi,j < Qaverage

1, Qi,j ≥ Qaverage.
(13)

The reason behind the threshold cutoff based on the average statis-
tic is that the gradients mediative kernel module between two tasks
is activated if and only if their conflicts are above the degree of av-
erage conflicts among all tasks. The side effect is to learn a sparse
structure of the GMK modules during architecture search, reducing
the risk of overfitting for the MTL model and achieving an automatic
capacity control. We will investigate the effect of threshold cutoff in
later experimental ablation study (see Sec. 4.4.4).

3.4 Learning Process

Similar to the learning process of CoNAL [42], our MAMO alter-
natively optimizes two subproblems. The upper-level subproblem is
to determine architecture parameters. The lower-level subproblem
is to update model parameters using gradient descent methods. In
summary, the learning algorithm for our MAMO model is shown in
Algo. 1.
Learning architecture parameters (Lines 4-5, Algo.1) During
learning the architectures in the search space, if a gradient conflict
is detected between tasks (i, j) at some layer by Eq. (13), then a new
GMK module hi,j is generated. The core of architecture search is to
determine such conflicts, i.e., I(ℓ)i,j in Eq. (7). See details described in
the above Section 3.3.
Learning model parameters (Lines 6-7, Algo.1) After the determi-
nation of architecture parameters, the problem is reduced as a stan-
dard MTL via multi-objective optimization. The new KKT condi-
tions of MAMO with GMK modules are formulated as follows:
1. Exist a1, . . . , am ≥ 0, such that

∑
t∈[m] a

t = 1 and∑
t∈[m] a

t∇
θsh,θ

hi,j L̂t(θsh, θhi,j , θt) =∑
t∈[m]

at
(
∇θsh L̂t(θsh, θhi,j , θt) +∇

θ
hi,j L̂t(θsh, θhi,j , θt)

)
= 0;

(14)
2. For ∀t ∈ [m], ∇θt L̂t(θsh, θhi,j , θt) = 0.

We adopt existing algorithms to learn model parameters, i.e., the
multiple-gradient descent algorithm (MGDA) [7, 31].

3.5 Comparison with SOTA Methods

Higher capacity of search space We compare our MAMO with the
CoNAL [42], an SOTA model of recent MTL architecture learning
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Figure 3: Model performance (∆) vs model size of various MTL
methods on NYUv2 dataset. The reference point is single-task learn-
ing (STL). MAMO has different sizes MAMO-{i}, see Sec. 4.4.1.



methods. In the following, m the number of tasks, and L the num-
ber of layers (dimension of parameters d omitted due to the same
backbone used). For the search space, our MAMO learns the gradi-
ents mediative kernel modules {h(ℓ)

i,j} which have space capacity of
O(m×m×L), while CoNAL is O(m×L). As a result, our MAMO
has higher ability to search a better MTL architecture over CoNAL.
More importantly, the computation cost of searching the architec-
tures is the same between our MAMO and the CoNAL, i.e., O(m2).
This is because the CoNAL still has to compute the cosine similarity
of pairwise gradient vectors among all tasks, i.e. cos(gradi, gradj)
for ∀i ∈ [m], j ∈ [m], when it performs the conflict-noticing archi-
tecture learning process.
Better trade-off performance against size For the complexity of
model parameters, it depends on the learned architectures, i.e., how
many GMK modules are activated. Fig. 3 shows the overall perfor-
mance (in terms of ∆ defined in Eq. (15)) vs model size (in terms of
the number of parameters in mega bytes) of various MTL methods on
the NYUv2 dataset. In details, our large MAMO (i.e., MAMO-5, see
more Sec. 4.4.1), has a size of around 140M which achieves relative
3.0% improvements. In contrast, the baseline MTL-NAS [11] has
larger size (180M) but worse performance (0.66%) than our MAMO.
Our proposed MAMO method can learn an effective MTL architec-
ture with a reasonable model size achieving the best performance
improvement, see more in Section 4.4.1.

4 Experiments
We evaluate our proposed MAMO method with different groups of
MTL approaches on two benchmarks. Then we demonstrate the flex-
ibility of our MAMO by integrating it into SOTA methods to promote
their performance further. We study the effect of multi-objective opti-
mization, the impact of search strategy including the number of con-
flicts detection and the setting for threshold cutoff. Finally, we show
the optimization dynamics.

4.1 Experimental Setup

We describe the benchmark datasets, evaluation metrics for MTL
overall performance, implementation details for reproducibility, and
state-of-the-art methods for comparison in this section.
Datasets Following CoNAL [42], we conducted experiments on two
benchmark datasets including CityScapes [6] and NYUv2 [34]. Same
with CoNAL, we use the version published in MTAN [22].
Metrics Besides the performance metrics in each task, follow-
ing [26], we compute an overall metric ∆ to evaluate an MTL model
as the average gain w.r.t. the single task learning (STL) model over
all tasks and each task’s all evaluation metrics:

∆ =
1

m

∑
i∈[m]

(−1)si
MTLi − STLi

STLi
× 100% (15)

where MTLi denotes the performance of the MTL model in terms of
the i-th evaluation metric while STLi is for the STL model. The si
equals 0 if the metric is the higher the better else 1 otherwise.

Since ∆ is an average statistic, it will be largely influenced by
an extreme value of some individual task. We compute the win rate
(Win) as a more robust statistic, accounting for how often MTLi

outperforming STLi for all i ∈ [m].
Implementation For fairness, we use the same backbone architec-
ture as CoNAL1 [42]. Following MTAN [22], we train all models

1 https://github.com/yuezhixiong/CoNAL

Table 1: Results on the CityScapes dataset. Best results are in bold-
face in each scenario. STL is the reference point and the relative per-
formance improvements are computed for MTL methods (“+” indi-
cating MTL better than STL while “-” indicating worse). The last
two columns are computed across all tasks and metrics (↑ indicating
the higher the better).

Method
Segmentation Depth

∆↑ Win↑mIoU Pix Acc Abs Err Rel Err

STL 69.60 91.82 0.0125 45.95 0 0

HPS +0.96 +0.29 -0.80 -7.48 -1.75 50%

GradNorm -3.18 -1.07 -12.80 +3.11 -3.49 25%
PCGrad +0.93 +0.20 0 -2.41 -0.31 50%
CAGrad +0.56 +0.08 -2.39 +1.32 +0.42 75%
RotoGrad -2.05 -0.49 -8.00 +2.11 -2.10 25%

MGDA -3.67 -1.33 +2.40 +4.26 -1.38 50%

MTL-NAS -6.10 +1.76 -15.20 -4.30 -6.84 25%
CoNAL +0.10 -0.03 +1.60 +7.18 +2.21 75%

MAMO +1.39 +0.33 +4.80 +3.74 +2.57 100%

with ADAM [18] using a learning rate 10−4 with batch size of 4 on
NYUv2 and 16 on CityScapes, and halve the learning rate in 40k
iterations. We will release our code with learned architectures check-
points for benefiting the research community.

4.2 Baselines

We compare with different groups of various methods.

• i) STL and HPS: The single-task learning (STL) method trains
each task separately. The hard parameter sharing (HPS) architec-
ture uses a shared encoder for all the tasks while reserves task-
specific decoders for each task.

• ii) Gradients manipulation: GradNorm [2], PCGrad [41], CA-
Grad [21], RotoGrad [15].

• iii) Multi-objective optimization: MGDA [31].
• iv) Architecture learning: MTL-NAS [11], CoNAL [42].

4.3 Main Results

4.3.1 Results on Cityscapes

The results on the Cityscapes dataset are shown in Table 1. First, the
single task learning (STL) method is a strong baseline and we can
find that the manually-designed network architectures (HPS) face
the serious negative transfer issue. Second, the architecture learn-
ing methods (CoNAL) generally reduce the risk of negative transfer
but is still struggling (MTL-NAS). Third, the gradients manipulation
methods show a diverse difference where most of them have diffi-
culty in improving overall MTL performance. Fourth, modeling the
multitask learning as multi-objective optimization has its potential
advantages (MGDA vs GradNorm). Our MAMO achieves consistent
improvements over both individual tasks and overall MTL metric.

Notably, since tasks are competing with each other in multi-task
learning, a larger improvement in one task usually hurts another
task. For example, GradNorm has +3.11 Rel Err improvement on the
Depth task, but it has -3.18 mIoU degradation on the Segmentation
task, leading to an overall -3.39% degradation over all tasks and met-
rics. In contrast, our MAMO can mediate task conflicts and achieve
an overall 2.57% improvements. Attacking the task interference is
our goal in this paper. Overall, the trend is very consistent over all
tasks, metrics, and datasets.



Table 2: Result on NYUv2 dataset. Best results are in boldface in each scenario. STL is the reference point and the relative performance
improvements are computed for MTL methods (“+” indicating MTL better than STL while “-” indicating worse). The last two columns are
computed across all tasks and metrics (↑ indicating the higher the better).

Method

Segmentation Depth Surface Normal

∆↑ Win↑Angle Distance Within t°

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

STL 54.07 75.51 0.4074 0.1681 22.11 15.59 38.36 64.42 74.80 0 0

HPS +0.31 +0.06 +4.61 +6.78 -5.61 -11.33 -7.74 -4.62 -3.13 -2.74 44%

GradNorm +0.57 +0.13 +5.20 +8.56 -6.19 -9.55 -7.84 -5.26 -3.62 -2.00 44%
PCGrad -1.24 -0.38 +5.81 +3.80 -5.79 -8.01 -7.14 -4.33 -3.00 -2.25 22%
CAGrad +0.07 +0.06 -4.29 -5.41 +1.49 +1.98 -1.87 -1.08 -0.68 +0.25 44%
RotoGrad +0.03 -0.34 +6.72 +6.60 -4.29 -5.83 -8.55 -3.95 -2.40 -1.22 33%

MGDA -12.83 -5.64 -0.39 +1.84 +0.27 +0.19 +0.15 +0.26 +0.21 -1.77 66%

MTL-NAS -0.27 -0.39 +5.57 +8.98 -1.40 -2.69 -0.54 -0.32 -2.96 +0.66 22%
CoNAL 0 +0.18 +5.49 +7.01 +0.49 +2.50 +2.50 +1.00 +0.46 +2.18 88%

MAMO +1.20 +0.74 +6.70 +8.80 +1.22 +2.88 +2.81 +1.50 +1.09 +3.00 100%

4.3.2 Results on NYUv2

The results on the NYUv2 dataset are shown in Table 2. We have
the following observations. First, the manually-designed network ar-
chitectures are largely impacted by the datasets. For example, HPS
shows a more severe negative transfer on the NYUv2 dataset than
that on the Cityscapes dataset. Second, using a single alone technique
like gradients manipulation (GradNorm, PCGrad, and RotoGrad) or
architecture search (MTL-NAS) is not enough to improve the MTL
performance with a large margin. Third, we may need to combine
multiple techniques to achieve a better performance like CoNAL
which integrates both gradients manipulation and architecture search
in one model. Finally, our MAMO achieves the best overall MTL
metric and also shows a strong performance over individual tasks.
Note, although MTL-NAS and PCGrad have the same win rate (Win)
over STL (22%), MTL-NAS is better than STL (+0.66) while PC-
Grad worse than STL (-2.25) in terms of overall average performance
(∆). In summary, together with the Fig. 3, our MAMO learns an ef-
fective architecture with a reasonable model size, achieving the best
overall MTL performance on both datasets.

4.4 Ablation Study

We first show MAMO achieves a good trade-off performance against
model size. We ablate the impact of GMKs and multi-objective op-
timization in MAMO. We then show that MAMO can be integrated
into other SOTA methods to promote their performance. We analyse
the choices of search strategy regarding threshold cutoff. Finally, we
give optimization curves and computational efficiency of MAMO.
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Figure 4: Performance changes with the number of detections (where
number 0 corresponds to the HPS method). Left: on the Surface Nor-
mal task in terms of the 22.5°↑ metric (the higher the better). Right:
on the Depth task in terms of the Abs↓ metric (the lower the better).

Table 3: Number of activated GMKs varying with conflicts detection.
Detection MAMO-1 MAMO-2 MAMO-3 MAMO-4 MAMO-5

NYUv2 7 4 2 1 1

Cityscapes 2 1 1 1 0

4.4.1 Trade-off performance against model size

Number of activated GMKs As shown in Algo. 1, the key to search
strategy is the number of conflicts detection performed by MAMO.
We first show the number of activated GMKs varying with conflicts
detection as shown in Table 3. As more GMKs are generated, the
parameter scaling will be getting larger. The severity of conflicts are
higher in early detection where seven GMKs are generated in the first
conflict detection. Gradients conflict situation gets mitigated along
with more GMK modules activated.
Performance against size As the number of detection increases,
more gradients mediative kernel (GMK) modules will be automat-
ically generated according to the conflicts indicator, leading to an
MAMO that has bigger model capacity to fit the data samples. In
details, as shown in Fig. 4 (left), performing only one conflict detec-
tion will lead to large performance improvements over the fixed HPS
architecture on the Surface Normal task. This demonstrates the ne-
cessity of architecture learning. In Fig. 4 (right), the tendency shows
the performance of MAMO stably increases along with the detec-
tion times rasing from one to three, and then MAMO shows a sign
of saturation when the number of detection reaches some threshold
point, say four on the Depth task, due to the fact that an over-complex
model might be overfitted.

4.4.2 Impact of multi-objective and GMKs

Impact of multi-objective MTL can be formulated as both linear
scalarization as in Eq. (3) and multi-objective (MO) optimization as
in Eq. (4). We ablate the impact of MO by removing it, i.e., replacing
MO with LS. As shown in Table 4, optimizing MAMO via multi-
objective optimization has advantage over linear scalarization on the
NYUv2 dataset. Theoretical result [14] reveals that LS is incapable
of fully exploring Pareto front and MO has the potential of finding
balanced solutions. Our empirical results show the advantage of MO
over LS under multitask architecture learning.
Impact of GMKs As shown in Fig. 1d, our MAMO mitigates the
conflict by generating gradients mediative kernel (GMK) modules.
We ablate the impact of GMK by removing it, i.e., replacing GMK



Table 4: Impact of multi-objective (MO) and gradients mediative ker-
nel (GMK) of MAMO on the NYUv2 dataset.

Method

Segmentation Depth Surface Normal

Angle Distance Within t°

mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓ Mean↓ Median↓ 11.25↑ 22.5↑ 30↑

HPS 54.24 75.56 0.3886 0.1567 23.34 17.98 35.39 61.44 72.46

MAMO 54.72 76.07 0.3801 0.1533 21.83 15.14 39.44 65.39 75.62
w/o MO 54.06 75.65 0.3850 0.1563 21.99 15.20 39.32 65.07 75.15

w/o GMK 53.47 75.55 0.3859 0.1550 22.52 15.81 37.59 63.98 74.40

with task-exclusive modules as in CoNAL [42] (see Fig. 1c). As
shown in Table 4, it is necessary for our GMK modules to mitigate
the conflicts in the new high-dimensional joint space (see Eq. 3.1)
since it can adaptively fuse the shared knowledge and task-specific
modules during architecture learning. The trade-off between sharing
knowledge and task-specific learning is dynamically optimized based
on GMK modules.

4.4.3 Integrating MAMO with SOTA methods

Our MAMO is model-agnostic and it can be integrated into other
SOTA methods. We show such flexibility in Fig. 5 where MAMO
are integrated with CAGrad (left column) and PCGrad (right column)
respectively. Both SOTA methods are belonging to the gradients ma-
nipulation methods, see Fig. 1. We can see that integrating MAMO
with SOTA methods can promote their performance further, demon-
strating the necessity of architecture search and multi-objective opti-
mization besides gradient projections.

4.4.4 Search strategy for indicator threshold cutoff

As shown in Eq. (13), one key to search strategy is the setting for
threshold cutoff to compute the gradients conflicting indicator, which
controls the automatic generation of GMK modules and the model
capacity. Besides the average statistic Qaverage, we show results of
keeping the TopK most conflicting gradients kernel in Fig. 6. The
larger the K, the more GMK modules generated, thus the bigger ca-
pacity. Since it is tedious to tune the K, we use the average statistic
which is automatically computed along with the architecture search.

4.4.5 Optimization curves and computation efficiency

Optimization curves We show the optimization dynamics of our
MAMO comparing with HPS evaluated on the Normal Surface task
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Figure 5: Integrating MAMO into CAGrad and PCGrad on NYUv2
dataset. Upper part: Higher is better, on the Segmentation and Sur-
face Normal (Within t°) tasks. Lower part: Lower is better, on the
Depth and Surface Normal (Angle Distance normalized to 1) tasks.

Table 5: Computational efficiency (Speedup↑) vs overall performance
on the NYUv2 dataset.

Method STL HPS CAGrad CoNAL MAMO

Speedup↑ 1.0x 1.61x 0.73x 0.60x 0.56x
∆↑ 0 -2.74 +0.25 +2.18 +3.00

(Within t=11.25°) on the NYUv2 dataset in Fig. 7, and we can see
that our MAMO reaches a better Pareto optimal solution than the
HPS. Moreover, HPS saturates very soon in the first 50 epoches and
then gets stuck in the local optimal. Our MAMO still learns hungry
till 250 epoches and converges to a higher performance solution.
Computation efficiency Our MAMO achieves a good trade-off over
computational efficiency (Speedup↑) and overall performance (∆↑)
by comparing with typical baselines, as shown in Table 5.
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Figure 6: Search setting for threshold cutoff: Average vs TopK. On
the Normal Surface task in terms of the Within t=11.25°↑ metric on
NYUv2 dataset (the higher the better).
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Figure 7: Optimization performance curve. On the Normal Surface
task in terms of the Within t=11.25°↑ metric on NYUv2 dataset (the
higher the better).

5 Conclusion
We proposed a novel MAMO method to learn Multi-task Architec-
tures from the perspective of Multi-objective Optimization. We intro-
duced the gradients mediative kernel (GMK) modules in the search
space and designed an effective and efficient search strategy. The
adaptive task-specific layer of MAMO adaptively fused the shared
knowledge and dynamically learned to switch to task-specific mod-
ules. We demonstrated the effectiveness by comparing with various
groups of MTL approaches on challenging benchmarks. We analyzed
the complexity of MAMO and it achieved automatic capacity control
by comparing the model performance vs model size. We empirically
showed that STOA methods can be improved further by integrating
with MAMO. In the future, we will extend our MAMO to large num-
ber of tasks.
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