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Highlights 

 Introduces Noetic State Representation Graph for dialog 

state tracking. 

 Enhances reasoning using DialoGPT for encoding utterance 

sequences. 

 Utilizes graph attention for explicit dialog context 

representation. 

 Achieves superior performance on SGD and MultiWOZ 

datasets. 
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Abstract  

Dialog state tracking (DST) is a crucial process in task-oriented dialog systems, 

evaluating the current state of a conversation based on preceding interactions. Two 

effective techniques for DST are Large Language Models (LLMs) and neural 

networks. However, conventional neural networks lack explainability and reasoning 

abilities, limiting their adaptability to unknown domains and complex scenarios, 

posing challenges in real-time human-machine interfaces. This paper formulates the 

DST problem by assembling and representing the belief state using an explicit 

model and integrating it to enhance the neural network’s DST capabilities. A novel 

technique, the Noetic State Representation (NSR) Graph, is proposed to address 

these challenges. The NSR graph offers a dynamic and explicit representation of 

dialog context that synchronizes with multi-turn dialogues. To improve reasoning 

ability and semantic augmentation, a pre-trained language model, DialoGPT, is 

employed as the encoder for utterance sequences. The core NSR graph is built and 

encoded using a graph attention network to ensure the explicit representation of 

dialog context. To generate the belief state, the proposed model utilizes a classical 

sequence decoder, which is guided by the context information from the NSR graph 

and utterances. Experimental results demonstrate the effectiveness of this approach, 

achieving a 0.8% improvement on unknown domains and a 1.7% improvement 

across all domains in the Schema-Guided Dialogue (SGD) dataset, outperforming 

advanced techniques and showing strong results on the MultiWOZ dataset. 

Keywords: Task-oriented dialog system; Dialog state tracking; Noetic State 

Representation Graph;  DialoGPT; Graph Attention Network; Multiple domains.  

1. Introduction 

Dialog Management (DM) is a crucial component of task-oriented dialog systems 

[1]. Since the 8th Dialog System Technology Challenge was held, dialog 

management research has expanded from single-domain to multiple and cross-
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domain [2]. As the core module of the DM, Dialog State Tracking (DST) extracts 

user goals and relevant information at each turn based on the preceding dialog and 

additionally provides a corresponding dialog state for dialog Policy Learning (PL), 

which helps the agent determine the appropriate actions to take [3]. DST is 

especially important since its results directly determine the quality of the responses. 

Since the DSTC8 was held, an end-to-end neural network dialog system based on 

fine-tuning Generative Pre-trained Transformer 2 (GPT-2) [4] has achieved the best 

performance in human conversation evaluation, followed by many state-of-the-art 

end-to-end task-oriented dialog systems that outperform pipeline methods. Such 

improvements indicate the potential of end-to-end neural network models, which 

largely benefit from the effective incorporation of rich semantic information from 

pre-trained language models and the exploitation of fine-tuning modes on DST. For 

instance, Bidirectional Encoder Representations from Transformers- DST (BERT-

DST) [5] applies an end-to-end framework as the backbone and introduces 

representation from the transformer (BERT) as a bidirectional encoder. DST via 

Entity Adaptive pre-training (DSTEA) [6] presents Natural Language Understanding 

(NLU) benchmarks of a task-oriented dialog system.  

Moreover, external knowledge and schema information have been exploited 

to improve DST performance [7, 8]. External knowledge is incorporated for dialog 

understanding [9]. The Multi-view Graph Convolution and multi-agent 

Reinforcement Learning (MGCRL) method [10] presents a dialog state graph for 

reconstructing domain-slot pairs with a graph mode and enhances the DST 

performance by using a copy mechanism. However, these methods consider limited 

dialog turns instead of entire conversations. Previous research has shown that 

employing Pre-trained Language Models (PLMs) and external knowledge are 

feasible approaches for dialog state tracking tasks. However, in real-world 

engineering applications, rule-based dialog systems still be the mainstream method 

for the following reasons. BERT-based PLMs offer powerful semantic information, 

but their bidirectional structure and contextual dependencies are inconsistent with 

the one-directional nature of task-oriented dialogues, which limits their ability to 

capture temporal conversation flow. Additionally, previous models heavily rely on 

predefined ontologies and schemas, which blocks their capacity to augment dynamic 
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dialog state information and extend to unseen domains. Overall, neural network 

models still lack controllability, interpretability, and generalization, rendering them 

impractical. To solve these deficiencies, the proposed method focuses on the 

following three aspects: The Noetic State Representation (NSR) Graph building 

process is synchronized with each dialog turn, as shown in Figure 1, and it gradually 

evolves into a Noetic state representation graph that contains domain, slot, and value 

nodes, when the dialog turns iterate from 1st to 5th. 

 Complex Scenario:  Practical applications often involve complex scenarios. 

Cross-domain and multi-domain scenarios are relatively universal in real 

applications and indicate a new trend in task-driven dialog. Consequently, the 

foremost problem with the DST task in complex scenes is solving the 

complexity of the dynamic dialog state. To represent the state of the dialog 

context, the NSR Graph is presented with entity granularity and is built to 

synchronize with the multi-turn dialog proceeding. 

 Reasoning Explainability:  End-to-end neural networks fail to explicitly 

explain their decision-making process. Despite some other Natural Language 

Processing (NLP) tasks incorporating knowledge graphs to explain the 

reasoning path, they can realize only reverse causal interpretation. In this paper, 

the NSR Graph is exploited in both the encoding and decoding procedures to 

guide the dialog system for DST.  

 Model Generalization: Previous neural network models rely heavily on 

predefined ontologies and thus have poor generalizability in few-shot or zero-

shot settings. The proposed update mechanism of the NSR Graph could capture 

the new domain and slots in dialog flow. 

Overall, the proposed model is an end-to-end method that incorporates the NSR 

Graph to represent dialogue context and enhance semantic information. Figure 1 

illustrates how the model explicitly represents and integrates dialogue contexts and 

relevant semantic knowledge from schemas to improve the model's generalizability. 
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Figure 1: Construction of NSR Graph 
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1.1. Contribution  

The main contributions of this paper are as follows: 

 A novel dialog context representation structure, NSR Graph, is introduced, 

which differs significantly from traditional graph structures that only 

consider entity nodes and edges. NSR Graph effectively captures dynamic 

dialog states synchronized with dialog proceedings, enhancing DST. 

 NSR Graph is integrated into an end-to-end neural network to solve DST 

tasks in a generative manner with an open-vocabulary setting. Specifically, 

DialoGPT, a pre-trained transformer-based language model, is 

incorporated, and a domain-slot-value sequence is designed for embedding 

generation. The method leverages NSR Graph to fuse domain-slot 

correlations and employs a graph attention network to guide DST sequence 

generation. 

 The NSR Graph offers flexibility across multiple domains, making it robust 

for analyzing various datasets in multi-domain dialog tracking. 

Additionally, hyperparameters are optimized using the Adam optimizer, 

improving performance in multi-domain DST. 

 Experimental results on benchmark datasets demonstrate strong 

performance in complex scenes and unseen domains. On the MultiWOZ 

dataset, the approach achieves competitive results compared to baselines, 

while on the Schema-Guided Dialogue (SGD) dataset, it excels in solving 

few-shot problems and adapting to unseen domain-slot pairs. The results 

confirm that incorporating an NSR Graph enhances explainability and 

generalization in neural network models for DST. 

1.2.  Organization 

The rest of the paper is organized as follows: Section 2 contains a brief description 

of previous works related to multi-domain dialog state tracking. Section 3 presents 

the problem formulation of this work. Section 4 elaborates on the proposed 

methodology. Section 5 contains the experimental results of this work. Section 6 

presents the ablation study. Section 7 contains the discussions and implications. This 
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paper concludes with Section 8. 

2. Related works 

For tracking the multi-domain dialog state, Khan et al. [11] employed Long Short 

Term Memory (LSTM). The dialog data obtained from various dialog domains were 

used. Without considering the availability of the in-domain data for the models’ 

training, this procedure enhanced the performance of belief tracking. Tracking the 

correct beliefs using this procedure was complicated. Le et al. [12] established a 

dialogue state tracking multimodally. From the evaluations done, it was found that 

the proposed multimodal dialogue systems showed their superiority. The video 

domains were not explored in this work. For tracking the scalable and universal 

beliefs, Guo et al. [13] developed Enriching Sub-words Information Explicitly with 

BERT (ESIE-BERT) for slot filling and intent classification. The experimental 

result showed significant performance.  The proposed model was not tested with the 

varying domain ontology. To forecast the slot value on multi-domain dialog state 

tracking, Jia et al. [14] developed a dual strategy. The experimental analysis attained 

superior performance. However, only a limited number of datasets were explored in 

this work. For the dialogue systems based on task, Zhao et al. [15] developed a 

Graph ATtention (GAT) network. The cross-domain slot problem was alleviated 

using the ontology schema subgraph and dialogue context subgraph.  An 

experimental analysis was performed. However, the performance was poor. Khan et 

al. [16] developed a scalable DST based on multi-attention. For the clients to finish 

their tasks, a natural language processing interface was provided by the task-oriented 

dialogue agents. The encoding of dependencies by the model was an important 

parameter to perform accurate DST in multi-domain. Therefore, a new framework to 

encode the slot semantics and conversation history was developed in this paper. 

From the experiments done, it was noted that in the full dataset the proposed 

technique increased the Joint Goal Accuracy (JointGA). Efficient approaches were 

not used to collect the correlations and dependencies among the slots. Zhu et al. [17] 

developed Efficient Context and Domain Guidance based on DST (ECDG-DST) for 

smart dialogue systems. The efficient context was developed to minimize the 

amount of data and also utilized for high refinement of historical dialogue data to 
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protect the key details. A slot gate was developed to encourage the domain guide, as 

well as enhance the accuracy of value generation. You et al. [18] focused on a Turn-

level Contrastive Learning Network (TCLNet) combined with a reranking module 

for (DST). These methods correct the in-between stages of the lengthy dialogues 

sequentially by differentiating data points at a finer approach. The capability of the 

model to handle long dialogue series was improved and attained superior 

performance. Jeon et al. [19] explained the Dialogue system by Optimizing a 

Recurrent Action policy (DORA) for multiple domain-related dialog systems, which 

utilizes Supervised Learning (SL) and successively, reinforcement learning was also 

applied to fine-tune the dialogue systems by utilizing recurrent dialogue policy and 

role of dialog history was efficiently performed. Lee et al. [20] developed DSTEA to 

learn the significant details of DST. Enhanced representation through knowledge 

Integration was utilized for pretraining and the selective knowledge masking method 

was developed to learn phase and word entities more commonly than other non-

entities. This evaluation shows this entity extraction enhances the performance of 

DST. 

2.1.  Research gap 

Utilizing NSR graphs for tracking the dialog state in multi-domain is an advanced 

topic that contains more advantages in dialog state tracking. The existing techniques 

contain a few limitations like complicated processes, lack of exploration of video 

domains, lack of exploration of various domain ontology, reduced datasets, and 

absence of advanced optimization techniques. To overcome these limitations an 

NSR Graph is proposed in this work. The research gaps are: 

Time consumption: The time consumed to track the dialog from various domains is 

an important parameter that decides the cost of the operation and the energy 

consumption. Due to the lack of better datasets the existing techniques consumed 

more time for its operations. 

Cost consumption: The cost of an operation mainly depends on the time consumed 

to execute the operation. The complexities in the operations of the existing works 

increase the time consumption and thereby increase the cost consumption. 

Accuracy: Accuracy is a parameter that decides the efficiency of any technique. 
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The existing techniques do not contain effective advanced techniques which lead to 

a decrease in the accuracy.  

3. Problem formulation 

The dialog belief state at time t , denoted as tB , is a set of slot-value pairs capturing 

the user’s intent. It is formally defined as: 

          NiDdVvSsvsdB didiiit ,..,2,1,,,:                             (1) 

where d is domain name (eg., taxi, restaurant, flight, etc), D is set of all possible 

domains, dS is the set of all possible slot names (eg., departure, destination, arrival 

time) in domain d , dV is the set of all possible values corresponding to slots in 

domain d , N is the total number of slot-value pairs at time t .( ii vs : ) represents the 

thi slot-value pair. For example, the user input is "I need a taxi from Cambridge to 

Gardenia at 12:15 PM" and the corresponding dialog belief state is given as: 

         













15:12:,

:,:

arrivebytaxiCambridge

departuretaxiGardeniandestinatiotaxi
Bt                    (2) 

The structured sequence representation tY is a linearized format of tB , where slot-

value pairs are concatenated using a special separator token [ SEP ]. 

     













15:12:],[,

:],[,:

arrivebytaxiSEPCambridge

departuretaxiSEPGardeniandestinatiotaxi
Yt               (3) 

To generate the belief state tB , the probability of the sequence tY is modeled as a 

product of conditional probabilities, considering previous belief states 1tB  and 

additional contextual information tY . This is expressed as: 
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                                                  (4) 

where  iy Vocab Y , n  represents the predefined maximum sequence length or 

the actual sequence length determined by the [ EOS ] token and  Vocab Y  typically 

refers to the vocabulary of the target variable Y , which includes all unique words (or 

tokens) present in the dataset. The generated sequence tY  is then transformed back 

into tB  using predefined transformation rules. In Equation (4), the input consists of 

the previous belief states 1tB  and additional contextual information tE . The belief 

states 1tB capture the essential information about the dialogue's history, including 

the system's understanding of the conversation up until the previous time step. This 

historical belief state already encodes the relevant content of the utterances 

indirectly, as it reflects both the user inputs and the system's responses. The 

additional contextual information tE , which includes things like the system's state or 

other features, provides supplementary details necessary for generating the next 

belief state. Instead of directly using the raw utterances as input, the model leverages 

the belief states and contextual information to update the dialogue state, as the belief 

states already implicitly carry the necessary information derived from the utterances. 

Thus, this approach reduces redundancy by not explicitly reintroducing the 

utterances themselves but still ensuring that all relevant information is captured 

through the belief states and context. 

4. Proposed Methodology 

In this section, a detailed explanation of the technique proposed in this work is 

presented. It includes the architecture of the proposed methodology and the various 

components in it.  
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Figure 2: Overall framework of the proposed NSR Graph. 

4.1. Architecture overview 

The overall framework designed and depicted in Figure 2, follows a structured 

pipeline to track and update the belief state in a dialogue system, ensuring seamless 

interaction between its components. It consists of four key modules such as 

NoeticGPT encoder, DSV prompter, NSR graph encoder, and DSV generator. The 

framework processes three main inputs at each time step t : history dialogue 

utterance (user utterance and system response) within a window size 2w , Domain-

Slot-Value (DSV) string representing the structures belief state, and NSR graph 

adjacency matrix 1tA  from the previous time step. The process begins with the 

NoeticGPT Encoder, which takes as input the user utterance, system response, and a 

formatted Domain-Slot-Value (DSV) string. The DSV string represents the 

structured belief state, where each DSV node corresponds to a specific domain (e.g., 

restaurant, taxi), slot (e.g., location, time), and value (e.g., Cambridge, 12:15 PM) in 

the dialogue. The DSV string’s role is to encode these components into a shared 

semantic space, ensuring contextual dependencies are preserved while generating 

fixed-size sequence representations. The output is a set of contextualized 

embeddings that represent both the utterance and DSV nodes in a unified space. 

                  



 

 

These embeddings serve as input to the NSR Graph Encoder, which constructs an 

explicit belief state representation using an adjacency matrix that defines 

relationships between domains, slots, and values. By leveraging a GAT, it 

dynamically encodes DSV sequences, facilitating context exchange and aggregation 

across dialogue turns. The output is a graph-structured belief state embedding 

enriched with contextual relationships. This embedding is then passed to the DSV 

Prompter, a binary classifier that determines if the current dialogue turn contains 

slot-value pairs that need extraction. If no relevant slot-value pairs are detected, the 

classifier outputs 0, halting further processing. If slot-value pairs are present, it 

outputs 1, activating the DSV Generator. The DSV Generator takes as input the 

NSR Graph embeddings and utterance embeddings, fusing them using an attention 

mechanism to generate the updated belief state. The generator iteratively predicts 

tokens step-by-step by integrating extracted embeddings from both the utterance 

sequence and NSR Graph hidden states. The next token is generated upon 

concatenation through token embedding, continuing until the End-of-Sequence 

(EOS) token is reached or the maximum sequence length is met. The output is a 

structured DSV sequence representing the updated belief state for the current 

dialogue turn. This updated belief state is then fed back into the system to guide 

response generation, action prediction, and overall dialogue management. By 

integrating PLMs, GNNs, and attention mechanisms, the framework effectively 

captures local and global contextual dependencies, ensuring precise and robust 

dialogue state tracking. The seamless information flow and interdependence 

between modules ensure that belief state tracking remains dynamic, contextually 

relevant, and continuously refined across turns, thereby enhancing the robustness of 

the dialogue system. 

4.2. NoeticGPT Encoder 

NoeticGPT Encoder is based on the DialoGPT [21], a generative pre-trained 

dialogue transformer designed specifically for dialog response generation tasks. In 

each dialog turn, the system and user utterance UttSEP  are formalized within a 

sliding window. Here, tU represents the user utterance at turn t , while tS  

                  



 

 

represents the system response at turn t . The separator character is denoted by [

SEP ]. To balance the model performance and complexity, the window size n is set 

to 2 and the maximum token length to 128 in practice. The utterance formulation is 

as follows. 

  nsizewindowSSEPUSEPSSEPUSEP ttntntUtt   ,],[,],...,[,],[, 11             (5)    

The reason for separating the user utterance and system response is to enable the 

classification model to perform the classification task based on each separate part of 

the system and user utterances. Moreover, the model needs to determine whether the 

current utterance requires span information extraction. In addition, the NoeticGPT 

Encoder provides the initial node embeddings for the NSR Graph. A formatted 

string DSVSEP  is presented, comprising domain, slot, and value predefined in the 

ontology. To be more adaptable to open-vocabulary settings, the domains and slots 

are represented with independent tokens without specific descriptions, despite the 

predefined ontology incorporated. Here, abstract placeholders are designed to 

describe non-categorical slots. Specifically, numerical slots are represented by 

valuenumber  , name slots are represented by valuename , time slots are represented by 

valuetime , and place slots are denoted by valueplace . 



















valuevaluevaluevalue

DSV

placetimenamenumber

Cambridgecheapvaluetimeprice

typeslotattractiontaxihoteldomain

SEP

,,,

,...,,:,,..,

,:,,...,,:

                      (6) 

Taking the NSR Graph on the MultiWOZ dataset as an example, there is a total of 

69 nodes involved, which corresponds to a length of 70 for DSVSEP . Compound 

words in 63 nodes are replaced by their first words or synonyms. Then, descriptors 

are added for the domain, slot, value, and four types of placeholders. The length of

DSVSEP is fixed to enable indexing of the 63 nodes in the NSR Graph based on their 

position after encoding. 

         DSVUttt SEPCLSSEPNoeticGPTH ],[,                                    (7) 

                  



 

 

NoeticGPT Encoder concurrently encodes both UttSEP and DSVSEP for subsequent 

modules incorporating the causal information between them. The special token [

CLS ] is used to separate UttSEP   and DSVSEP  in the input. Then the NoeticGPT 

Encoder produces the hidden states tH , and the hidden states at [ CLS ] position are 

then used as input to the DSV Prompter. The hidden states at UttSEP position are 

sent into the DSV Generator, and the hidden states at DSVSEP
 
position are used as 

input to the NSR Graph encoder.  

4.3. DSV Prompter 

DSV Prompter aims to prompt the decoder to learn DSV generation correctly, which 

also prevents unnecessary tracking of DSV generation during the inference process. 

This module consists of two-layer linear networks with ReLU activation and a 

softmax layer. It takes the hidden state tH  on the index of [ CLS ] as input.  

    Pr ReCLS CLS
t t tP ompter H softmax lu w H b           (8)

where tPrompter
 
is the output at turn t , w  and b represent learnable parameters, 

and Relu is the activation function that introduces non-linearity to the network. The 

output of the softmax function indicates whether the current dialogue turn requires 

tracking and generation of slot-value pairs. If the DSV Prompter outputs 0, the 

decoder skips generating any slot-value pairs for this turn, effectively preventing 

unnecessary tracking. During training, if the output is 0, the decoder generates an 

empty string, signaling that no slot-value pair needs to be generated. However, if the 

DSV Prompter outputs 1, the DSV Generator will be activated in the inference stage 

to generate the corresponding slot-value pairs as required. 

4.4 NSR Graph   

An example of the step-by-step building process of the NSR Graph is illustrated in 

Figure 3. The NSR Graph represents the evolving dialog context and serves as a 

structured guide for generating the DSV sequence. It consists of nodes and edges, 

where nodes represent domains, slots, and values, while edges capture their 
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relationships. The primary goal of the NSR Graph is to model dependencies between 

these components as the dialog progresses. Different datasets have varying 

structures: for instance, the MultiWOZ dataset consists of 37 slots in 7 domains, 

while the SGD dataset contains 215 slots across 16 domains. Certain domain-slot 

relationships are naturally stronger than others. For example, in a travel-related 

conversation, the slot “stay” is frequently associated with the domain “hotel”, while 

“stars” is less relevant to “hotel” and “destination” is unrelated. These structured 

correlations play a crucial role in accurate DSV prediction. To effectively capture 

both static schema knowledge and dynamic dialog context, the NSR Graph is 

constructed with a static schema graph and a dynamic dialog context graph. A Static 

Schema Graph is derived from predefined dataset ontologies, capturing fundamental 

domain-slot-value relationships at initialization. A Dynamic Dialog Context Graph 

evolves at each dialog turn, updating dependencies between domains, slots, and 

values based on the conversation flow. 

 

Figure 3: Building process of NSR Graph 

Graph Representation and Evolution 

At any given dialog turn t , the NSR Graph is represented as a directed graph 

 ttt EVG , , where tV  represents the set of nodes (domains, slots, and values) at 

time t  and tE  represents the set of edges (relationships between nodes). The 
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structure of tG is dynamically updated as new slot-value pairs appear in the 

conversation. At the initial time step ( 0t ), the graph is initialized using the 

schema structure of the dataset. As the conversation progresses from t  to 1t , new 

slot-value pairs are incorporated into the graph, and the adjacency matrix 1tA  (from 

the previous time step) is updated to tA .  

 

Figure 4: Local attention of adjacency matrix representation 

Adjacency matrix update mechanism 

The adjacency matrix tA  encodes the relationships between nodes in the NSR 

Graph. The matrix evolves as follows: If a new slot-value pair is observed at time t , 

the corresponding node and edge are added to the graph, updating tA . If the slot 

already has an existing value connection, the previous edge weight is reduced to 0, 

and a new connection is established. Mathematically, if a new slot-value pair ( vs, ) 

appears in the conversation at turn t , the adjacency matrix is updated as: 

 
 

 













 existedalreadyedgetheifvsA

connectionvaluepreviousahadsif

ttimeatpairvalueslotnewaisvsif

vsA

t

t

,1,

,0

,,1

,

1                 

(9) 

This incremental update mechanism ensures that the NSR Graph maintains both 

local dialog dependencies (recent slot-value pairs) and global contextual information 
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(previous interactions). Figure 4 demonstrates local attention applied to the 

adjacency matrix representation, allowing the model to focus on meaningful dialog 

dependencies. 

Graph Embedding and Attention Mechanism 

At each dialog turn t , the dialog state is encoded as a vector representation: 

 bwhAfh ttt ,,, 1                                                        (10) 

where th represents the dialog state vector at time t , tA represents updated 

adjacency matrix, 1th is the previous dialog state,  f  represents a transformation 

function that integrates structural dependencies and, w and b  are the learnable 

weight and bias parameters. The dialog state vector is then transformed into a raw 

graph embedding using a GAT to refine structural information: 

 ttt AhGATh ,                                                             (11) 

where th  is the refined embedding incorporating both local and global graph 

attention. GAT enables the model to focus on relevant domain-slot-value 

dependencies while suppressing irrelevant connections. The final NSR graph 

embedding at the time step t  is computed as: 

          htht bhwH                                                           (12) 

where hw and hb are trainable parameters and  is an activation function. This 

embedding is subsequently passed to the DSV generator for sequence generation. 

Overall the NSR Graph provides a structured and evolving representation of dialog 

context by integrating static schema knowledge with dynamic dialog dependencies. 

Through adjacency matrix updates and graph attention mechanisms, the model 

effectively captures both short-term slot-value dependencies and long-range 

contextual information. This structured approach enhances DSV prediction 

accuracy, ensuring coherent and contextually relevant responses. 

4.5.   DSVGenerator 
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The DSV Generator module is responsible for generating the DSV sequence tY

based on the outputs from previous modules. Instead of using a pre-trained 

generation model such as T5, the classical LSTM [22] is chosen as the final decoder 

option for two main reasons. First, LSTM reduces the dictionary space of the target 

sequence and requires fewer dictionary-mapping layer parameters. Second, LSTM is 

better suited for combining the utterance sequence and NSR Graph embeddings and 

requires fewer parameters to achieve comparable performance to transformer 

decoders. This is because target spans are generally shorter in length, with a 

maximum length of 23 and an average length of 5.14. By utilizing LSTM, the 

proposed model requires fewer parameters and enables efficient training, even with 

a single GPU. 

Token-Level DSV Generation 

During the decoding process, the DSV sequence is generated at the token level. The 

input at the generation time step t , denoted as DSV
th , is a concatenated vector that 

integrates: the contextual information from NSR graph embeddings (
NSR
th ), the 

utterance encoding from previous turns (
Utt
th ), and the last generated token ( 1ty ). 

Thus, the token representation at the time step t  is given by: 

 1,,  t
Utt
t

NSR
t

DSV
t yhhfh                                                       (13) 

The next token is predicted using a softmax function over the vocabulary: 

 bwhsoftmaxy DSV
tt                                                       (14) 

where w  is the learnable weight matrix, and b is the bias parameter. This token-

level DSV Generator efficiently extracts slot-value pairs from the input utterance, 

leveraging a span-generation approach for direct slot disambiguation. An example of 

slot disambiguation through span generation is presented below. Consider the 

utterance: "I need to book a hotel in the east that has 4 stars."Here, the phrase "in 

the" indirectly suggests the area slot without explicitly stating it. The proposed end-

to-end sequence generation model identifies this correspondence without requiring 

additional slot alignment mechanisms. This approach also enables generalization to 

unseen slot values during inference. 
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Guiding the Decoding Process with NSR Graph 

A critical component of the decoding process is the initial cell state of the LSTM, 

which is embedded with the NSR Graph output: 

 0
LSTM NSRc g h                                                    (15) 

Where LSTMc0  is the initial LSTM cell state and  NSRg h  represents function 

mapping NSR graph embeddings to the initial LSTM state. This allows the NSR 

Graph representation to influence span generation, ensuring contextual alignment 

between slot-value relationships in the dataset and the generated output. The target 

sequence in the proposed approach is structured as: 

                       1 1 2 2, , , , ,...., ,n nY d s v s v s v                                    (16) 

where ( 11,vs ),( 22 ,vs ),…,( nn vs , ) represents slot-value pairs, and d is the domain 

token. This format ensures smooth decoding while constraining sequence length, as 

predefined slot values do not require explicit delimiters. For example, the utterance: 

"I am looking for a cheap restaurant in the center of the city." corresponds to the 

target sequence: 

 " "," "," "," "," "Y restaurant price cheap area center                            (17) 

To enhance decoding stability, special start and end tokens, [ BOS ] and [ EOS ], 

respectively,  are employed during training: 

                          
    EOSvsvsdBOSY nn ,,,...,,,, 11                                   (18) 

Decoding Strategies 

The probability transition matrix, P , is computed over the target vocabulary space, 

V , guiding token generation as: 

             
   bwhsoftmaxtyyP DSV

tt                                                   (19) 

where  
DSV
th is updated at each step based on the previously generated tokens.  
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Training and Inference Strategy 

During training, the teacher forcing mechanism is applied with a ratio of 0.2, where 

the model is guided by ground truth tokens 80% of the time. For inference, sequence 

decoding algorithms such as greedy search and beam search are used. Greedy 

Search selects the token with the highest probability at each step and the Beam 

Search maintains multiple candidate sequences, choosing the most probable global 

sequence. The Beam Search outperforms Greedy Search in DSV sequence 

generation: 

 




T

t

tt

Y

t yyPargmaxY

1

1:1

                                

 (20) 

where tY  is the final optimal predicted sequence, chosen by maximizing the 

probability over all candidate sequences Y . 
Y

argmax selects the sequence Y that 

maximizes the probability, 
T

t 1

 represents the product over all time steps t , from 1 to 

T .  1:1 tt yyP  represents the probability of generating a token ty given all previous 

tokens 1:1 ty , ty is the predicted token at time step t , and 1:1 ty represents the 

sequence of all tokens generated before time step t .
 
This formulation is used in 

Beam Search, which maintains multiple candidate sequences and selects the one 

with the highest probability, ensuring optimal generation of DSV sequences.
 

4.6.  Objective functions 

The training objectives consist of two parts: one for the DSV Prompter module and 

another for the DSV Generator module. Both objective functions are based on the 

cross-entropy function. During the training process, the aforementioned modules are 

jointly trained and optimized using the summation of the respective losses. The loss 

function is defined as follows. 

          *prompterGenerator LosslossLoss  
                                             

(21) 

In particular, when   = 0.01, both modules achieve the best performance and avoid 

                  



 

22  

overfitting. An intuitive reason for this is that the sequence generation task has a 

higher optimization complexity than the binary classification task, making it more 

sensitive to overfitting. 

5. Experimental results  

The experiments conducted in this work and their results are discussed in detail in 

this section and it also includes the graphical representations.  

5.1. Datasets 

This paper focuses on a complex cross-domain DST task and conducts experiments 

on three large-scale multi-domain goal-oriented datasets: SGD [20, 23], MultiWOZ 

2.1 [24, 25], and MultiWOZ 2.2 [24, 26]. MultiWOZ 2.1, a widely used benchmark 

for dialog state tracking tasks, comprises over 10,000 dialogs, spanning seven 

distinct domains, and 30 corresponding domain-slot pairs. MultiWOZ 2.2 improves 

upon MultiWOZ 2.1 by fixing dialog state annotation errors across 17.3% of the 

utterances and enhancing the ontology definition and slot annotations. SGD is the 

most challenging DST testbed, comprising over 16,000 multi-domain conversations 

spanning 16 domains. Moreover, the dataset contains unseen domains and services 

in the evaluation set to assess performance in zero-shot or few-shot settings. Table 1 

summarizes the statistics of the datasets used in the proposed experiments. 

Table 1. Statistics of datasets used. The numbers indicate the number of data points 

used in the training datasets. 

Characteristics MultiWOZ2. 1 MultiWOZ2. 2 SGD 

No. of domains 7 8 16 

No. of dialogs 8, 438 8, 438 16, 142 

Total no. of turns 113, 556 113, 556 329, 964 

Avg. turns per dialog 13. 46 13. 46 20. 44 

Avg. tokens per turn 13. 38 13. 13 9. 75 

No. of slots 37 61 215 
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(a)                                                            (b) 

 

(c)                                                         (d) 

 

(e)                                                       (f) 

Figure 5: Comprehensive accuracy and loss graph. (a) Accuracy of MultiWOZ 2.1 

(b) Accuracy of MultiWOZ 2.2 (c) Accuracy of SGD (d) Loss of MultiWOZ 2.1 (e) 

Loss of MultiWOZ 2.2 (f) Loss of SGD 

5.2 Performance analysis 

The training and testing accuracy and loss values are presented in Figure 5 (a-f). 
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Training accuracy is generally very high for all datasets, with   MultiWOZ 2.1   

achieving the highest training accuracy at   0.982, followed by MultiWOZ 2.2 

achieving an accuracy of 0.971, and SGD achieving an accuracy of 0.963. Similarly,   

testing accuracy is highest for MultiWOZ 2.1 (0.968) but slightly lower for 

MultiWOZ 2.2 (0.951) and lowest for SGD (0.943). The low training losses indicate 

that the model fits the training data well. The training loss of three datasets such as 

MultiWOZ 2.1, MultiWOZ 2.2, and SGD are 0.07, 0.09, and 0.12 while the testing 

loss is 0.18, 0.25, and 0.34, respectively. 

5.3. Training settings 

The data preprocessing procedure follows a method similar to that used in [27] for 

both MultiWOZ 2.1 and 2.2 datasets. Since existing DST datasets do not involve 

span labels, the belief state is converted to available span labels at the beginning of 

data preprocessing. The proposed NSR Graph model is implemented using the 

AllenNLP [28] framework, which enables efficient development with its flexible 

code structure. With the benefit of the window input setting, the maximum length of 

the input sequence only needs to be 128 when the window size is two. The 

DialoGPT [29] model with 768 hidden units is used as the encoder, incorporating a 

multilayer GAT [30] network for graph embedding and a 3-layer LSTM sequence as 

the decoder. The best-performing model in the proposed experiments has 145 

million parameters and a dropout of 0.2 (including the DialoGPT). The models are 

trained using the Adam optimizer with a learning rate of 
51 e  and 300 warmup 

steps. The batch size is set to 32 with four steps of gradient accumulation, and the 

gradient clip is set to 10. The proposed model aims to generate span and 

classification labels, with a 0.01 weight for classification labels. After training for 

two days on a Tesla A100 GPU for 115 epochs, NSR Graph achieves the best 

performance. The number of layers for the GAT network is set to 2 with 16 attention 

heads for optimal graph embedding. The output sequence length is constrained to a 

maximum of 23 tokens, with an average length of 5.14. During training, a teacher 

forcing ratio of 0.2 is used, and a beam search width of 3 is employed for improved 

decoding. Additionally, the dropout rate is set to 0.1, and a batch size of 32 is 

adopted during training. 
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5.4. Main results 

The main evaluation metric for the DST tasks was JointGA, defined as the ratio of 

dialog turns in a dataset for which all slots have been filled correctly according to 

the ground truth. It is a widely used metric for evaluating task-oriented DST models. 

Table 2 presents the performance of the proposed approach compared to the 

baselines on various datasets. 

Table 2. JointGA of the NSR Graph and baselines on the MultiWOZ2.1, 

MultiWOZ2.2, and SGD datasets. 

Models MultiWOZ2.1 MultiWOZ2.2 SGD Unseen 

Domains 

SGD All 

Domains 

LSTM 46.0% 45.4% - - 

ESIE-BERT 45.7% 45.2% - - 

ECDG-DST 52.1% 51.4% 23.5% 30.1% 

TCLNet 49.0% 47.9% - - 

DORA 43.4% 42.0% 20.0% 25.4% 

DSTEA 50.8% 48.8% - - 

OPAL 48.5% 49.3% - - 

MSPN 47.8% 48.2% - - 

SeKnow-S2S & 

SeKnowPLM 
51.6% 50.9% 23.7% 29.8% 

Proposed 53.5% 52.9% 24.3% 31.8% 

The performance is measured using JointGA, which assesses the percentage 

of dialogue turns where the predicted state matches the ground truth. Some of the 

existing end-to-end models for DST include the Ontology-Aware Pretrained 

Language Model (OPAL) [31], the Multi-Span Prediction Network (MSPN) [32], 

and the Semi-Structured Knowledge Management-Based Sequence-to-Sequence 

(SeKnow-S2S) model and SeKnowPLM [33]. The existing end-to-end DST models 

have several advantages and limitations. OPAL benefits from an ontology-aware 

approach, ensuring robustness in structured environments but limiting adaptability 

to unseen domains. MSPN improves span extraction with multi-span prediction yet 
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struggles with complex multi-turn dialogues. SeKnow-S2S & SeKnowPLM enhance 

knowledge integration, leading to better generalization in unseen domains but still 

fall short of optimal accuracy. Traditional models like LSTM [11] and ESIE-BERT 

[13] show significantly lower performance, highlighting the need for more advanced 

architectures. TCLNet [18] is effective in structured dialogues but lacks adaptability 

to unseen scenarios. 

The proposed model achieves the highest accuracy across all datasets, with 

53.5% on MultiWOZ 2.1, 52.9% on MultiWOZ 2.2, 24.3% on SGD Unseen 

Domains, and 31.8% on SGD All Domains, demonstrating its superiority over 

existing approaches. Among state-of-the-art models, ECDG-DST performs 

competitively with 52.1% and 51.4% on MultiWOZ datasets but lags behind in 

unseen domains (23.5%). SeKnow-S2S & SeKnowPLM show strong performance 

on SGD Unseen Domains (23.7%) and SGD All Domains (29.8%) but still fall short 

of the proposed model. End-to-end models such as OPAL (49.3%), and MSPN 

(48.2%) achieve competitive results but do not surpass the proposed model. OPAL 

leverages an ontology-aware approach, making it robust in structured environments 

but less adaptable to unseen domains. MSPN relies on multi-span prediction, which 

improves span extraction but struggles with complex multi-turn dialogues. Models 

like DORA [19] and DSTEA [20] provide moderate improvements but still fail to 

match state-of-the-art end-to-end approaches. TCLNet achieves 49.0% on 

MultiWOZ 2.1 and 47.9% on MultiWOZ 2.2, demonstrating its effectiveness in 

structured dialogues but lacking adaptability to unseen domains. The proposed 

model overcomes these limitations by integrating the NSR Graph for better schema-

based reasoning, enhancing robustness in complex dialogues, and improving 

generalization to unseen domains. It effectively incorporates schema and 

background knowledge while maintaining high accuracy across structured and 

unseen datasets. However, its reliance on structured schema knowledge limits its 

adaptability to open-domain conversations, and its performance in zero-shot and 

few-shot DST remains uncertain. Future work should focus on developing schema-

free DST mechanisms, optimizing graph-based reasoning for efficiency, integrating 

few-shot learning strategies, and incorporating human feedback mechanisms to 

enhance adaptability and generalization in practical applications. 
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The metrics presented in Table 3 assess the performance and efficiency of 

various models in DST. Parameters (M) represent the total number of learnable 

weights in the model, indicating its complexity. FLOPs (B) measure the number of 

floating-point operations, reflecting the computational cost during inference and 

training. Training Time (Hours) tracks the duration required to train the model, 

highlighting the time efficiency of the training process. Computational Time 

(Seconds) measures the time taken for the model to process input and make 

predictions, which is crucial for real-time performance in practical applications. 

Together, these metrics provide a comprehensive evaluation of the models' 

complexity, computational demands, training efficiency, and real-time performance. 

Table 3. Performance analysis of complexity 

Techniques Parameters 

(M) 

FLOPs 

(B) 

Training time 

(Hours) 

Computational time 

(seconds) 

Proposed 14 125.76 20 0.12 

LSTM 23 136.22 29 3.45 

ESIE-BERT 17 133.45 26 5.32 

ECDG-DST 21 138.26 31 1.23 

TCLNet 15 129.35 24 4.67 

DORA 19 127.42 22 2.43 

DSTEA 18 132.57 24 2.65 

OPAL 16.6 129.42 25 1.28 

MSPN 17.4 130.49 27 1.31 

SeKnow-S2S &  

SeKnowPLM 14.5 126.48 22 1.03 

6. Ablation study 

There are four basic modules in the proposed model. The ablation studies for the 

NSR Graph, the DSV prompter, and NoeticGPT are implemented individually to 

learn the effects of these modules related to the DSV generation. The impact of 

utilizing the DialoGPT encoder with causal characteristics, the NSR Graph with 

comprehensive semantic knowledge, and the DSV prompter with prompt data for 
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enhancing DST performance is analyzed. The variation of span accuracy under 

multiple settings during the training process is shown in Figure 6.  

 

Figure 6: Span accuracy variation under different settings on the test dataset during 

the training process 

The variations in the span accuracy for various settings like NSR Graph-LSTM, 

NSR Graph-ELMo, NSR Graph-BERT, and NSR Graph-DialoGPT (proposed) with 

concerning the test dataset at the time of training are shown in the above graph. The 

four curves in the graph indicate the four settings respectively as mentioned in the 

graph. From the accuracy curves in the graph, the curve of NSR Graph-DialoGPT 

reaches the highest accuracy value of 98.3% compared to the curves of other 

techniques. 

6.1. The effect of NoeticGPT Encoder 

A comparison is conducted between the NoeticGPT encoder and other encoders, 

such as LSTM, ELMo word embedding, and BERT. Based on the results presented 

in Figure 6, BERT performed similarly to DialoGPT in terms of span generation 

during the training process. However, as the epoch increased, BERT underperforms 

DialoGPT, which implies that DialoGPT exhibits stronger learning capability as the 

training becomes more detailed. The experiment results shown in Table 4 reveal that 
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the random encoding technique, when combined with LSTM, fails to learn sufficient 

semantic information from the training data. Although ELMo word embedding 

improves embedding performance, its unsophisticated approach to obtaining word 

embeddings limits its ability to capture complex semantic relations, resulting in only 

a modest performance gain. BERT, as a pre-trained model, excels in learning-rich 

semantic knowledge due to its extensive pretraining, leading to improved overall 

performance across the board. However, the NoeticGPT encoder, incorporating a 

pretraining procedure based on the inference DialoGPT model, enhances the causal 

reasoning capabilities, resulting in the best overall performance among the encoders. 

These results suggest that the ability to reason causally during encoding is crucial in 

the DST model. 

Table 4. Ablation studies for encoders on MultiWOZ2.1 with the JointGA and 

accuracy of each turn. 

Models JointGA  Turn Accuracy 

NSR Graph-LSTM 45.9% 96.4% 

NSR Graph-ELMo 48.5% 96.9% 

NSR Graph-BERT 51.4% 97.8% 

NSR Graph-DialoGPT 53.5% 98.3% 

6.2. The effect of NSR Graph 

NSR Graph facilitates the generation of belief states by providing contextual 

representations during decoding. The ablation study is presented in Table 5 to 

evaluate the effectiveness of the NSR Graph using four different generation modes: 

no- NSR Graph, simple-NSR Graph, moderate-NSR Graph, and complex-NSR 

Graph. 

NSR Graph-L2H3 outperforms the other three NSR Graph modes, indicating 

its effective intervention and instruction in predicting DST results, particularly in 

unseen domains. Intuitively, this is because the NSR Graph enriches the implicit 

dependencies and background knowledge of various slots. However, Table 5 shows 

that increasing the number of layers and heads does not improve results, despite the 

increasing network complexity. The experimental results suggest that L2H3 
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achieves the best performance by capturing second-order neighbors within three 

types of relations, which provides an appropriate representation of graphs for 

embedding slot-value relationships in datasets. Furthermore, it is observed that a 

complicated network can lead to overfitting and reduced generalization abilities. 

Table 5. Ablation studies for the NSR Graph on SGD with JointGA. L stands for 

Layers, and H stands for Heads, for example, L1H1 indicates that the GAT network 

has one layer and one head. 

Models Unseen Domain All Domain 

w/o NSR Graph 22.9% 26.8% 

NSR Graph-L1H1 23.5% 29.4% 

NSR Graph-L2H3 24.3% 31.8% 

NSR Graph-L4H5 24.2% 31.6% 

6.3. The effect of the DSV Prompter 

The DSV Prompter aims to ensure the generative properties of the decoder and 

effectively avoid confusion in decoding caused by the fake DSV sequence from 

turns that are unnecessarily tracked. The ablation outcomes for the DSV Prompter 

are shown in Table 6. 

To test the effectiveness of the DSV Prompter, ablation experiments are 

conducted by removing the module and examining the impact on classification and 

the main experimental indicator JointGA under different coefficients. As shown in 

Table 6, after removing the classification module, the JointGA can only achieve 

31.4%, while immediately increasing by 14.1% after completing the module. There 

are two main reasons for this. First, the overall model setting is affected. Without the 

classification module, the DSV Generator generates indiscriminately, resulting in a 

lot of noise that involves the learning and extraction of meaningful slot values. This 

is reflected in the prediction stage as frequent omission of slot value information and 

generation of ’None’ values. However, with the DSV Prompter module, such noise 

phenomena can be effectively eliminated. Second, the DSV Prompter provides 

guidance similar to prompt learning during the training process, influencing the 

backpropagation process of the generator and enabling it to learn more profound 
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knowledge, i.e., to generate responses under the guidance of whether there is 

valuable information in the script. After multiple experiments, it was found that 

setting the weight to 0.1 when the lambda ranged from 0.01 to 0.20 could achieve 

the optimal gain for JointGA. 

The ablation studies conducted demonstrate the effectiveness of the modules 

in the proposed method. In conclusion, the use of DialoGPT significantly enhances 

the performance of DST in complex scenes with causal and semantic-rich properties. 

The NSR Graph module effectively represents the dialog context and dynamically 

captures key DST information, introducing schema and background knowledge to 

new scenes and improving unseen domain adaptation. The integration of the 

modules in the proposed framework results in a complementary end-to-end DST 

span generation. As a result, the proposed methodology is suitable for hybrid causal 

inference and graph patterns. 

Table 6. Ablation studies for the DSV Prompter effect of the Main Experiment, λ is  

the weight of DSV Prompter Loss in Total Loss, Classification Accuracy, and 

JointGA on MulitoWoz 2.1 

Setting Classification Accuracy JointGA 

w/o Span Classifier - 31.4% 

λ=0.01 92.5% 45.4% 

λ=0.02 95.1% 46.1% 

λ=0.05 97.7% 49.7% 

λ=0.10 98.9% 53.5% 

λ=0.15 99.3% 53.2% 

λ=0.20 99.3% 51.4% 

7. Discussion and implications 

This study presents a novel approach to the DST task by introducing a noetic state 

representation graph (NSR-Graph). The proposed method leverages pre-trained 

language models, specifically DialoGPT, to learn schema knowledge through a 

predefined DSV sequence. By integrating these features, the proposed method 

generates a DST sequence that can dynamically capture the dialog state during 
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multi-turn dialog. The explicit graph representation of the NSR Graph enhances the 

model’s ability to capture and retain the context of the dialog. Compared to previous 

graph-based methods, NSR Graph is unique for combining static and dynamic 

elements to predict dialog states in open-vocabulary settings. This feature allows the 

proposed model to incorporate both knowledge and dialog context, providing 

promising results for practical use. 

For the theoretical implications, the proposed findings demonstrate the 

following: (1) the graph structure and model architecture of NSR Graph enable 

flexible access and utilization of external knowledge for downstream tasks. (2) NSR 

Graph is highly efficient in capturing the evolution of dialog dynamics and enhances 

model explainability with its explicit representation properties. To knowledge, the 

proposed study is the first to effectively combine static knowledge and dynamic 

dialog context to solve the DST task in a sequence generation mode, which is a 

significant contribution to the field. 

For the practical implications, the proposed method enables easier error-

tracking on downstream task models and performs better model controllability. 

Other graph-based algorithms can even be used for automatic error detection and 

correction in practical scenarios. Empirical results show the effectiveness of the 

proposed methodology. Besides, NSR Graph can be used in various downstream 

human-machine conversation tasks. 

8. Conclusion 

A dialog state representation graph, the NSR Graph, is proposed and incorporated 

into an end-to-end framework for DSV sequence generation. Compared with 

traditional methods that represent dialog states with only dialog history, the dialog 

context is explicitly formalized with the dynamic construction of the NSR Graph, 

which introduces schema and background knowledge of dialog context, effectively 

guiding DST. Experiments show that the NSR Graph achieves competitive results 

on the MultiWOZ dataset compared to traditional methods and even outperforms 

them on the SGD dataset. This indicates that the proposed method can guarantee 

high JointGA in the DST task with explainability and generalizability, making it 

potentially applicable in practical scenarios. 
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The NSR Graph has been applied in real-world scenarios, but the current 

reliance on structured schema knowledge still poses limitations, particularly in open-

domain conversations. This reliance may restrict the model's ability to effectively 

handle diverse, unstructured dialog scenarios, making it less adaptable to zero-shot 

and few-shot DST tasks. To address these limitations, the development of schema-

free DST mechanisms is a key focus, enabling better handling of open-domain 

dialogues without the need for predefined schemas. Additionally, optimizing graph-

based reasoning for increased efficiency and scalability will be critical for real-time 

applications. Future work will also involve integrating few-shot learning strategies 

to improve performance in low-data scenarios, crucial for applications encountering 

infrequent or novel dialog states. Another direction is the incorporation of human 

feedback mechanisms, similar to those used in systems like ChatGPT, to enhance 

adaptability, refine responses, and facilitate continuous learning. These mechanisms 

will allow the system to adjust and improve over time based on user interactions. 

Furthermore, integrating the CopyNet approach, akin to SaCLog, is planned to 

enhance DST JointGA by improving named entity recognition and dialog state 

extraction. These improvements will strengthen the system's ability to capture and 

respond to complex dialog states, ensuring a more accurate and effective DST 

process. The NSR Graph will also be incorporated into dialog policy learning and 

response creation, enhancing the overall flow and coherence of responses. By 

adopting the NSR Graph alongside dialog policies, the system can track dialog states 

accurately while generating appropriate and contextually relevant responses. 

References 

1. J. Sun, J. Kou, W. Hou, Y. Bai,. A multi-agent curiosity reward model for 

task-oriented dialogue systems. Pattern Recognit. 157(2025) p.110884. 

2. H. Yu, Y. Ko, Enriching the dialogue state tracking model with a asyntactic 

discourse graph. Pattern Recognit. Lett. 169(2023) 81-86. 

3. M. Heck, N. Lubis, C.V. Niekerk, S. Feng, C. Geishauser, H.C. Lin, M. 

Gašić, Robust dialogue state tracking with weak supervision and sparse 

data. Trans. Assoc. Comput. Linguist. 10(2022) 1175-1192. 

4. A. Ohashi, R. Higashinaka, Optimizing pipeline task-oriented dialogue 

                  



 

34  

systems using post-processing networks. Comput. Speech Lang. 90(2025) 

p.101742. 

5. Y. Park, Y. Ko, J. Seo, BERT-based response selection in dialogue systems 

using utterance attention mechanisms. Expert Syst. Appl. 209(2022) 

p.118277. 

6. M. Zhao, L. Wang, H. Ji, Z. Jiang, R. Li, X. Lu, Z. Hu, Mutually improved 

response generation and dialogue summarization for multi-domain task-

oriented dialogue systems. Knowl. Based Syst. 279 (2023) p.110927. 

7. T. Hong, J. Cho, H. Yu, Y. Ko, J. Seo, Knowledge-grounded dialogue 

modelling with dialogue-state tracking, domain tracking, and entity 

extraction. Comput. Speech Lang. 78 (2023) p.101460.  

8. Y. Yang, H. Huang, Y. Gao, J. Li, Building knowledge-grounded dialogue 

systems with graph-based semantic modelling. Knowl. Based Syst. 298 

(2024) p.111943.  

9. H. Xie, J. Chen, Y. Lin, L. Zhang, G. Wang, K. Xie, External knowledge 

document retrieval strategy based on intention-guided and meta-learning 

for task-oriented dialogues. Adv. Eng. Inform. 56(2023) p.102020.  

10. Z. Huang, F. Li, J. Yao, Z. Chen, MGCRL: Multi-view graph convolution 

and multi-agent reinforcement learning for dialogue state tracking. Neural 

Comput. Appl. 36(9) (2023) 4829-4846.  

11. M.A. Khan, Y. Huang, J. Feng, B.K. Prasad, Z. Ali, I. Ullah, P. Kefalas, A 

multi-attention approach using BERT and stacked bidirectional LSTM for 

improved dialogue state tracking. Appl. Sci. 13(3) (2023) p.1775. 

12. Li, J., Song, S., Li, Y., Zhang, H. and Hu, G., 2024. ChatMDG: A discourse 

parsing graph fusion based approach for multi-party dialogue 

generation. Information Fusion, 110, p.102469. 

13. Y. Guo, Z. Xie, X. Chen, H. Chen, L. Wang, H. Du, S. Wei, Y. Zhao, Q. 

Li, G. Wu, ESIE-BERT: Enriching sub-words information explicitly with 

BERT for intent classification and slot filling. Neurocomputing. 591 (2024) 

p.127725. 

14. X. Jia, R. Zhang, M. Peng, Multi-domain gate and interactive dual attention 

for multi-domain dialogue state tracking. Knowl. Based Syst. 286 (2024) 

                  



 

35  

p.111383. 

15. M. Zhao, L. Wang, Z. Jiang, R. Li, X. Lu,  Z. Hu, Multi-task learning with 

graph attention networks for multi-domain task-oriented dialogue 

systems. Knowl. Based Syst. 259 (2023) p.110069. 

16. M.A. Khan, B.K. Prasad, G. Qi, W.Song, F. Ye, Z. Ali, I. Ullah, P. Kefalas, 

UTMGAT: a unified transformer with memory encoder and graph attention 

networks for multidomain dialogue state tracking. Appl. Intell. 54(17) 

(2024) 8347-8366. 

17. M. Zhu, X. Xu, ECDG-DST: A dialogue state tracking model based on 

efficient context and domain guidance for smart dialogue systems. Comput. 

Speech Lang. (2024) p.101741. 

18. C. You, D. Xiong, TCLNet: Turn-level contrastive learning network with 

reranking for dialogue state tracking. Knowl. Based Syst. 302(2024) 

p.112308. 

19. H. Jeon, G.G. Lee, DORA: Towards policy optimization for task-oriented 

dialogue system with efficient context. Comput. Speech Lang. 72(2022) 

p.101310. 

20. Y. Lee, T. Kim, H. Yoon, P. Kang, J. Bang, M. Kim, DSTEA: Improving 

Dialogue State Tracking via Entity Adaptive pre-training. Knowledge-

Based Systems, 290 (2024) p.111542. 

21. S. Cao, Y. Jia, C. Niu, H. Zan, Y. Ma, S. Xu, Generating emotional 

responses with dialogpt-based multi-task learning. In CCF International 

Conference on Natural Language Processing and Chinese Computing (pp. 

485-496) (2022 September). Cham: Springer International Publishing. 

22. J. Zhang, Y. Feng, J. Zhang, Y. Li, The Short Time Prediction of the Dst 

Index Based on the Long-Short Time Memory and Empirical Mode 

Decomposition–Long-Short Time Memory Models. Appl. Sci. 13(21) 

(2023) p.11824. 

23. Dataset available at: https://github.com/google-research-datasets/dstc8-

schema-guided-dialogue 

24. Dataset available at: 

https://github.com/budzianowski/multiwoz/tree/master/data 

                  



 

36  

25. J. An, S. Cho, J. Bang, M. Kim, Domain-slot relationship modeling using a 

pre-trained language encoder for multi-domain dialogue state 

tracking. IEEE/ACM Trans. Audio Speech Lang. Process. 30 (2022) 2091-

2102. 

26. J. Qiu, Z. Lin, H. Zhang, Y. Yang, Hierarchical temporal slot interactions 

for dialogue state tracking. Neural Comput. Appl. 35(8) (2023) 5791-5805. 

27. P. Paromita, A. Khader, S. Begerowski, S.T. Bell, T. Chaspari, Linguistic 

and vocal markers of microbehaviors between team members during analog 

space exploration missions. IEEE Pervasive Comput. 22(2) (2023) 7-18. 

28. A. Dunn, D. Inkpen, R. Andonie, Designing and Evaluating Context-

Sensitive Visualization Models for Deep Learning Text Classifiers. 

In Artificial Intelligence and Visualization: Advancing Visual Knowledge 

Discovery (pp. 399-421) (2024). Cham: Springer Nature Switzerland. 

29. T. Nguyen-Mau, A.C. Le, D.H. Pham, V.N. Huynh, An information fusion 

based approach to context-based fine-tuning of GPT models. Inf. 

Fusion, 104 (2024) p.102202. 

30. X. Zhou, T. Zhang, C. Cheng, S. Song, Dynamic multichannel fusion 

mechanism based on a graph attention network and BERT for aspect-based 

sentiment classification. Appl. Intell. 53(6) (2023) 6800-6813. 

31. Z. Chen, Y. Liu, L. Chen, S. Zhu, M. Wu, K. Yu, Opal: Ontology-aware 

pretrained language model for end-to-end task-oriented dialogue. Trans. 

Assoc. Comput. Linguist. 11(2023) 68-84. 

32. Q.B. Liu, S.Z. He, C. Liu, K. Liu, J. Zhao, Unsupervised Dialogue State 

Tracking for End-to-End Task-Oriented Dialogue with a Multi-Span 

Prediction Network. J. Comput. Sci. Technol. 38(4) (2023), 834-852. 

33. S. Gao, R. Takanobu, A. Bosselut, M. Huang, End-to-end task-oriented 

dialog modeling with semi-structured knowledge management. IEEE/ACM 

Trans. Audio Speech Lang. Process. 30 (2022) 2173-2187. 

 

 

                  



 

37  

 

 

Declaration of interests 

 

 The authors declare that they have no known competing 

financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

 

 The  authors declare the following financial interests/personal 

relationships which may be considered as potential competing 

interests:  

 

 

 

 

 

 

None 

                  


