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Abstract

Diffusion models have emerged as state-of-the-art generative
methods, particularly excelling in conditional tasks such as
prompt-driven image synthesis. While recent research em-
phasizes the pivotal role of noise seeds in enhancing text-
image alignment and generating human-preferred outputs,
these works predominantly rely on random Gaussian noise
or heuristic local adjustments, , overlooking the potential of
global optimization strategies to systematically improve gen-
eration quality. To bridge this gap, we propose Seed Opti-
mization based on Evolution (SOE), a hybrid framework that
integrates global evolutionary search with local semantic re-
finement. The global evolutionary stage conducts seed selec-
tion by jointly optimizing text-image alignment (via CLIP-
Score) and human preference estimation (via ImageReward),
while the local stage employs diffusion inversion to inject
conditional semantics into the noise seed. Together, these
components constitute a model-agnostic, training-free opti-
mization framework for conditional diffusion models. Ex-
tensive experiments across various diffusion models demon-
strate that SOE consistently improves semantic fidelity and
visual quality, highlighting its generalizability and poten-
tial as a plug-and-play enhancement for generative diffusion
pipelines.

Code — github.com/T899work/Dual-seed-evolutionanry-
algortithm-for-noise-optimization-in-diffusion-model

Introduction
In recent years, diffusion models have achieved remark-
able breakthroughs in multiple fields, including computer
vision[(Xing et al. 2024; Nguyen et al. 2023; Garibi
et al. 2024)], natural language processing[(Yi et al. 2024)],
robotics[(Chi et al. 2024)] and bioinformatics[(Guo et al.
2024b)], significantly propelling the innovation of artificial
intelligence technology. As a pivotal application of diffusion
models in the visual domain, Text-To-Image (T2I), despite
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its notable achievements, still encounters substantial tech-
nical challenges when handling complex semantic combi-
nation prompts. T2I models struggle to accurately parse and
integrate diverse semantic information within prompts, lead-
ing to artifacts such as missing target entities, mismatched
attribute features, and logically inconsistent object composi-
tions(Chefer et al. 2023; Karthik et al. 2023).

Recent studies (Samuel et al. 2024; Karthik et al. 2023)
have revealed that diffusion models are highly sensitive to
input noise, such that even minor perturbations can lead to
significant changes in the output images. This characteristic
indicates that the initial noise not only profoundly impacts
the visual aesthetics of synthetic images but also largely de-
termines the semantic fidelity between the images and given
text prompts (Miao et al. 2025). Currently, one category of
methods enhances missing concepts by introducing atten-
tion modules (Chefer et al. 2023; Guo et al. 2024a; Agar-
wal et al. 2023), yet these methods are only applicable to
generative models with U-net architectures. Some other ap-
proaches focus on optimizing noise using gradients or inver-
sion processes (Miao et al. 2025; Eyring et al. 2024; Li et al.
2024), while additional methods employ neural networks to
map the initial noise into ”golden noise” (Zhou et al. 2024),
which requires training a dedicated neural network for noise
mapping based on the generative model. However, all these
methods fall under local optimization strategies, suffering
from high implementation costs and strong dependence on
the initial noise regions.

This paper explores a distinct approach rooted in the
hypothesis that diffusion models possess the intrinsic ca-
pability to generate semantically faithful images, yet their
performance is inherently sensitive to the semantic content
of initial random noise—images aligned with text prompts
are more likely to emerge when noise is sampled from
latent regions rich in prompt-relevant semantics. Inspired
by evolutionary algorithms, we introduce a global opti-
mization framework that mimics the evolutionary process
of population selection and variation to explore the noise
space efficiently. The proposed Seed Optimization based
on Evolution (SOE) employs a dual-metric evaluation sys-
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Figure 1: Comparison of SDXL model generation results across 5 prompts: vanilla SDXL, SDXL with Whole Inversion, Z-
sampling, Golden noise, RewardSelect, and our SOE.

tem: one measuring semantic fidelity and the other assess-
ing visual quality. Leveraging inversion diffusion local op-
timization, SOE enhances semantic consistency of candi-
date noise points while introducing an annealed seed search
strategy for dynamic interpolation between dual extremal
points. Specifically, inspired by the norm-constrained inter-
polation theory(Samuel et al. 2023), we employ annealed
norm-constrained interpolation between two optimal points.
By controlling the path length between these two optimal
points, we conduct random wide-range searches in the early
stage of optimization to cover diverse semantic interpreta-
tions within the initial noise space, and shorten the path
length in the later stage for fine-grained optimization—thus
enabling the gradual evolution of initial noise.

We conducted comprehensive experiments on three
benchmark datasets across mainstream diffusion models,
including SDv2.1(Rombach et al. 2022), SDXL(Podell
et al. 2023), and SDv3.5(Esser et al. 2024). Model per-
formance was rigorously evaluated using six core met-
rics: ClipScore(Hessel et al. 2021), ImageReward(Xu
et al. 2023), Aesthetic Evaluation Score (AES)(Schuhmann
2022), PickScore(Kirstain et al. 2023), Human Preference
Score (HPSv2)(Wu et al. 2023), and the composite metric
Average Gain derived from the former five. As illustrated
in Fig. 1, the initial noise optimized by SOE leads to sub-
stantial improvements in both semantic fidelity and visual
aesthetics of the generated images. Across all datasets, con-
sistent and significant enhancements were observed in all
evaluation metrics. Crucially, SOE relies solely on generic
evaluation models rather than being tied to specific diffu-
sion model architectures. This not only endows it with ex-

cellent cross-model generalization and practical applicabil-
ity but also makes it a plug-and-play solution that requires
no pre-training, additional modules, or reliance on specific
architectural constraints.

Our main contributions are summarized as follows:

• We have developed the dual-seed optimization frame-
work based on evolution (SOE) method, which lever-
ages the collaboration between dual-evaluation models
and few step inversion to optimize the noise in diffusion
models.

• Our study reveals that global noise optimization plays a
more critical role than local refinement in improving both
semantic alignment and perceptual quality. Additionally,
SOE exhibits strong compatibility with prior methods
(e.g., Golden Noise), functioning as an orthogonal en-
hancement that can be seamlessly integrated into existing
pipelines.

• The effectiveness of SOE has been validated through
extensive experiments. Across three datasets, it outper-
forms existing methods by 40% in SDv2.1, more than
30% in SDXL, and over 5% in SDv3.5 medium.

Related Work
Text-to-Image Generation The goal of text-to-image
synthesis is to generate images consistent with given text,
with early research focusing on GANs (Goodfellow et al.
2014), autoregressive models(Xiong et al. 2024), flow-
matching model(Ben-Hamu et al. 2024), though limited by
issues like mode collapse. In recent years, diffusion mod-
els have become dominant, where denoising diffusion prob-



abilistic models (Ho, Jain, and Abbeel 2020) transform noise
into images via progressive denoising, and conditional dif-
fusion models (Dhariwal and Nichol 2021) achieve seman-
tic control by integrating textual embeddings with guided
sampling—early works assumed initial noise follows a stan-
dard normal distribution N (0, I). However, precise align-
ment with text prompts remains challenging, with key fac-
tors being prompt encoding accuracy and initial noise dis-
tribution(Feng et al. 2023a; Karthik et al. 2023). To ad-
dress the issue of diffusion models generating results incon-
sistent with given conditions, numerous scholars have pro-
posed various optimization strategies(Samuel et al. 2023;
Wallace et al. 2024; Li et al. 2023; Agarwal et al. 2023;
Feng et al. 2023b; Zhang et al. 2024). Current studies ad-
dress this in two main ways: some optimize prompt repre-
sentations(Yuksekgonul et al. 2025; Xue et al. 2025) or em-
bedding encodings (Feng et al. 2023a), while another cate-
gory focuses on optimizing initial noise (Qi et al. 2024; Zhou
et al. 2024; Karthik et al. 2023; Chen et al. 2024), which
aligns with our research.

Initial Noise optimization Recent advances in noise opti-
mization for text-to-image synthesis include: (Chefer et al.
2023) introduced Generative Semantic Nursing, enhanc-
ing text-image alignment by augmenting cross-attention to
missing targets and slightly adjusting noisy images at each
denoising timestep; (Guo et al. 2024a) designed cross-
attention response scores and self-attention conflict scores
to partition the latent space and optimize noise toward ef-
fective regions; (Meng et al. 2023) observed that denoising
with an inversion step improves image quality, which in-
spiring Golden Noise to generate noise via one-step reverse,
construct a dataset, and train a transformation network; (Xu
et al. 2025) address style transfer by introducing negative
guidance in the reverse stage to shift sampling origins away
from original style content; (Bai et al. 2025; Bai, Sugiyama,
and Xie 2025) accumulates semantic information by alter-
nating denoising and inversion to leverage guidance gaps;
(Lu et al. 2025) aligns diffusion models with human pref-
erences via Inversion Preference optimization; in gradient-
based approaches, (Eyring et al. 2024) optimizes noise us-
ing multi-evaluator scores to boost prompt faithfulness and
aesthetic quality, while (Miao et al. 2025) employs a vi-
sual question answering model for scoring and simplified
gradient-based noise optimization. Notably, these methods
primarily rely on local optimization and some depend on
specific models. Several studies have also explored global
optimization strategies (Karthik et al. 2023), which generate
high-quality images through batch generation and evaluator-
based screening. However, their reliance on a single evalua-
tion criterion results in less significant improvements in se-
mantic alignment compared to enhancements in visual qual-
ity.

To address the above challenges, we propose a novel
training-free optimization pipeline that identifies high-
quality initial noise with both strong visual fidelity and se-
mantic alignment. The method selects two initial noise with
optimal image quality and highest semantic matching within
a batch, and combines them through a reverse semantic in-

jection mechanism. Benefiting from its independence from
specific diffusion model versions or architectures, our ap-
proach offers broad applicability and ease of integration.

Preliminaries
We first present preliminaries about DDIM(Song, Meng, and
Ermon 2023) and DDIM Inversion and the conditional sam-
pling. Given the noise schedule αt and σt and time step t.
we denote the forward noising process of diffusion models
as xt = αtx0 + σtϵt. In the sampling process, we first sam-
ple the initial noise xT ∼ N (0, I). Then, the forward nois-
ing process proceeds iteratively from t = T down to t = 1
according to the following update rule:

xt−1 =

√
αt−1

αt
xt +

√
αt−1(√

1

αt−1
− 1−

√
1

αt
− 1

)
εθ (xt, t, ω)

(1)

DDIM Inversion Denoising Diffusion Implicit Mod-
els(Song, Meng, and Ermon 2023) (DDIM) represents a
seminal deterministic sampling technique that constructs
implicit non-Markovian diffusion paths, achieving signifi-
cant improvements in generation efficiency while maintain-
ing sample fidelity. The sampling process can be formulated
as:

xt =

√
αt

αt−1
xt−1 +

√
αt(√

1

αt
− 1−

√
1

αt−1
− 1

)
ε̄θ (xt−1, t− 1, γ)

(2)

DDIM Inversion (Lugmayr et al. 2022; Mokady et al. 2023;
Pan et al. 2023; Zhang, Lewis, and Kleijn 2024; Hong et al.
2024) is the inverse process of DDIM sampling. Its core lies
in leveraging a deterministic path to reverse the diffusion
process from a low noise level image back to images with
higher noise levels, ultimately recovering the initial noise
xT that aligns with the given text prompt.

Conditional Guidance Mechanism Classifier-Free Guid-
ance (CFG)(Ho and Salimans 2020) enhances generative
controllability by interpolating conditional and uncondi-
tional diffusion model outputs. At time step t, the guided
noise prediction is given by:

ε̄θ (xt, t, ω) = ωεθ (xt, t| c)− (ω − 1) εθ (xt, t|Ω) (3)

where ω denotes the guidance scale and ∅ represents the
unconditional input. Notably, the initial noise xT in for-
ward diffusion should satisfy the conditional distribution
xT ∼ N(0, I| condition)(Dhariwal and Nichol 2021). Ex-
isting methods often overlook this prior assumption, leading
to potential mismatches between the reverse process opti-
mization target and the true data distribution.
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Figure 2: (Left) Schematic diagram of the Prompt and initial noise. (Right) Optimized iterative generation based on SDv2.1:
evolution from initial noise XT to selection by ClipScore, ImageReward, and final result output. In each epoch of SOE, a batch
of images is first generated, and the current optimal samples are selected via ImageReward and ClipScore. After information
is injected through Inversion, the optimal sample of the current epoch is obtained. For the initial noise corresponding to each
batch, random sampling is used in the first round; for other rounds, interpolated noise generated based on the two optimal
samples is adopted. The final output is the best image selected by ImageReward.

Seed Optimization Based on Evaluation

The initial noise XT significantly influences both the quality
and semantic consistency of generated images (Karthik et al.
2023; Eyring et al. 2024). As shown in Fig. 2, we innova-
tively propose a dual-noise collaborative search mechanism
combined with local mutation strategy, which jointly opti-
mizes semantic and visual quality by maximizing in paral-
lel reward signals from diverse preference dimensions. Since
inversion with guided difference can inject conditional infor-
mation into the initial noise, local mutation is implemented
via inversion.

Dual-noise Collaborative Search Mechanism Prior
work (Karthik et al. 2023; Eyring et al. 2024) has shown
that seed selection guided by learned reward models can sig-
nificantly enhance performance. However, most existing ap-
proaches focus on optimizing a single or composite metric
globally, which often introduces bias and fails to balance vi-
sual quality and semantic consistency. To this end, we pro-
pose a dual-noise collaborative optimization strategy un-
der a multi-preference reward formulation, inspired by prin-
ciple of linear interpolation between noise seed, which can
integrate the content of two images.

Concretely, during each optimization round, we first sam-
ple a population of noise vectors {xj}Ns

j=1 from the stan-
dard Gaussian prior N (0, I). Each sample is evaluated using
two distinct reward functions representing orthogonal hu-
man preferences: R1(·) for semantic relevance (ClipScore)
and R2(·) for human preference reward (ImageReward).

This dual-metric evaluation yields two optimal seeds:
xsem = argmax

xj

R1(xj), xhum = argmax
xj

R2(xj) (4)

These seeds capture the most promising directions in la-
tent space under their respective objectives. To facilitate ex-
ploration between these competing optima, we construct a
new noise candidate via linear interpolation with stochastic
perturbation:

xi =
(1− ei)xsem + eixhum

ni
√
2

+
z√
2ni

, z ∼ N (0, I) (5)

where ei ∈ [0, 1] controls the interpolation bias, and ni de-
notes the iteration index. The design of scaling term grad-
ually diminishes the influence of random perturbations by
reducing the weight of the stochastic term as the iteration
count ni increases. The initial noise also satisfies the χd dis-
tribution in terms of norm:

∥xi∥ ∼ χd =
∥xi∥d−1e−∥xi∥2/2

2d/2−1Γ(d/2)
(6)

where ∥·∥ is the stand Euclidean norm and Γ (·) is the
Gamma function.

The prior over the seed space can be defined as P (zT ) :=
χd(∥zT ∥), where this probability density function represents
the likelihood that a seed with norm ∥zT ∥ is drawn from
a Gaussian distribution. To guide sampling toward high-
quality regions, we redefine an objective function based on
the probability density over Ne interpolated samples:

LSOE = −
Ne∑
j=1

logP (xj) · ∥xj − xj−1∥exp(ni−Ni/2) (7)



which allows the interpolation to respect both the statistical
properties of the diffusion prior and the evolutionary princi-
ple of intermediate recombination. The exponential weight
term progressively suppresses large transitions as optimiza-
tion proceeds, transitioning from global search to local re-
finement.

This search-evaluate-update scheme integrates semantic
and visual preferences in a principled way, analogous to
crossover and selection in evolutionary algorithms. Unlike
purely random or single-objective selection schemes, our
method encourages diverse and high-reward seeds to collab-
oratively guide the noise trajectory. Furthermore, it is com-
patible with any reward model and agnostic to downstream
diffusion architectures, making it a universal plug-in for seed
selection.

Local Mutation via Guided Inversion While the dual-
seed crossover mechanism enables global exploration in the
noise space, evolutionary algorithms also rely on mutation
to introduce diversity and perform local refinement. To this
end, we incorporate a lightweight, model-agnostic mutation
strategy via guided DDIM inversion.

In particular, we leverage the Classifier-Free Guidance
(CFG) formulation (Ho and Salimans 2020) to perturb the
latent trajectory. Given a noisy latent xt, the guided noise
prediction is expressed as:

ε̂θ(xt, c) = γεθ(xt | c)− (γ − 1)εθ(xt | ∅) (8)

where γ is the guidance scale, c is the conditioning prompt,
and εθ denotes the predicted noise. During the generation
process, a higher γ emphasizes alignment with the prompt.

We adopt DDIM to map the selected latent sample xT

back to the intermediate state xtinv , and further map it to x̄T

via DDIM inversion with a guidance gap. Here, tinv is a small
integer relative to the full inference steps. This enables local
search around semantically meaningful trajectories in the la-
tent space.

In practice, we fix the guidance scale γ during inversion to
zero, effectively removing conditional bias in the backward
trajectory and allowing for generalization across preference
metrics. During re-sampling, the guidance scale is reintro-
duced to refine toward task-specific signals.

To balance quality and stability, we constrain the number
of inversion steps to a small fraction of the total inference
steps:

tinv = ⌊ρ ·Ninf⌋, ρ ∈ [0.14, 0.20] (9)
where Ninf is the total number of inference steps. As dis-
cussed in Appendix D, excessive inversion steps may distort
the generation quality due to accumulation of noise.

Overall, the complete SOE procedure alternates between
global search via dual-seed crossover and local refinement
via guided inversion, promoting diversity and controllability
simultaneously. The full optimization routine is summarized
in Algorithm 1.

Experiments
To evaluate image generation quality under given prompts,
all numerical simulations of Algorithm 1 were conducted on
a single NVIDIA GeForce RTX 4090D GPU. In the initial

Algorithm 1: SOE algorithm
Input: Prompt c, number of iterationsNi, number of seed
per iterationNs, inversion step Y , inversion guidanceγ
Output: Optimized noise xhum, image
x0,best

1: Sample initial Gaussian noise xT and generate image.
2: Select xsem and xhum from the generated images by us-

ing the evaluation model
3: Perform Y -step Inversion with guidance scale γ on the

xsem and xhum to obtain xsem−I and xhum−I

4: if Evaluation score of xsem−I and xhum−I meet the im-
provement criteria then

5: xsem = xsem−I, xhum = xhum−I

6: end if
7: for ni = 1 to Ni do
8: Initial noise samples based on equ.(5)
9: Optimize the norm of samples according to equ.(7)

10: Generate images from the optimized noise samples.
11: Select xsem and xhum from generated images by us-

ing the evaluation model
12: Perform Y -step Inversion with guidance scale γ on

the xsem and xhum to obtain xsem−I and xhum−I

13: if Evaluation score of xsem−I and xhum−I meet the
improvement criteria then

14: xsem = xsem−I, xhum = xhum−I

15: end if
16: end for
17: return xhum and corresponding result x0,best

setup, Ns = 10, Ni = 4, Y = 9, γ = 0. First, we assess
SOE’s performance in text-to-image tasks. Second, we con-
duct an ablation study on SOE’s components and hyperpa-
rameter impacts.

Text-To-Image Generation We comprehensively assess
the quality of generated images using our proposed ap-
proach. Specifically, we conduct both quantitative and qual-
itative analyses.

Dataset In accordance with the settings used in prior work
(Zhou et al. 2024; Bai et al. 2025), we sourced prompts
from subsets of three datasets for text-to-image genera-
tion: HPDv2(Wu et al. 2023), PickaPic(Kirstain et al. 2023),
and Drawbench(Saharia et al. 2022), random sampling 200
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Figure 3: Fixed 4 Iterations: Quantitative Results of SOE on
ImageReward and ClipScore with Varying Seeds per Itera-
tion (10 Random Tests on Single Prompt)



Dataset Method ClipScore ImageReward PickScore AES HPSv2 Average Gain

HPDv2

SDv2.1 0.3272 0.3969 21.4301 5.5710 26.0938 -
Z-Sampling 0.3274 0.4421 21.4119 5.5583 26.6250 0.1317

Attention excite 0.3293 0.3901 21.4730 5.5717 26.5000 0.0070
Initno 0.3279 0.3438 21.4976 5.5534 26.3500 -0.1218

RewardSelect 0.3383 1.1494 21.8837 5.6468 27.4062 2.0149
SOE 0.3395 1.3405 21.9601 5.6491 27.5156 2.5083

PickaPic

SDv2.1 0.3260 0.3749 20.8608 5.6116 26.0625 -
Z-Sampling 0.3256 0.4956 20.7767 5.5958 26.7344 0.3397

Attention excite 0.3265 0.4158 21.0952 5.5871 26.1562 0.1211
Initno 0.3240 0.4252 21.0694 5.5519 26.3125 0.1370

RewardSelect 0.3350 1.2546 21.5855 5.6445 27.4844 2.4693
SOE 0.3389 1.4147 21.6473 5.6456 27.9062 2.9276

Drawbench

SDv2.1 0.3240 0.3113 21.3789 5.4840 26.4375 -
Z-Sampling 0.3299 0.3589 21.4082 5.4171 26.7812 0.1733

Attention excite 0.3283 0.2359 21.6314 5.4106 26.2812 -0.2364
Initno 0.3283 0.4074 21.5260 5.4194 26.5938 0.2804

RewardSelect 0.3434 1.2328 22.2017 5.4785 27.4531 3.0959
SOE 0.3471 1.4702 22.2417 5.4926 28.0469 3.8969

Table 1: Quantitative comparison results of SOE with comparative methods using SDv2.1 on Pick-a-Pic, DrawBench, and
HPDv2 datasets.

prompts each from HPDv2 and PickaPic, and 100 from
Drawbench. Experiments were conducted at 512 × 512 and
1024 × 1024 resolutions, leveraging four open-source mod-
els: SDv1.4, SDv2.1(Rombach et al. 2022), SDXL(Podell
et al. 2023) and SDv3.5 medium(Esser et al. 2024). Specifi-
cally, SDv1.4 and SDv2.1 generated 512×512 images, while
the remaining models produced 1024×1024 outputs.

Baseline and Evaluation We employ five evaluation met-
rics: ClipScore(Hessel et al. 2021), ImageRewards(Xu et al.
2023), PickScore(Kirstain et al. 2023), AES(Schuhmann
2022), and HPSv2(Wu et al. 2023) to validate the effective-
ness of SOE. As each metric emphasizes different aspects ,
we calculate an Average Gain (AG) to quantify the improve-
ment of our approach. The formula for AG is:

AG =
∑

i

Si − Sbase

Sbase
(10)

where a higher AG value indicates a more significant en-
hancement. Given that many existing noise optimization
methods exhibit strong model dependency, we conducted a
comprehensive comparative study across different models.
Specifically, we employed seven baseline methods: Vanilla
SD, whole-inversion, Zigzag(Bai et al. 2025), Inversion, At-
tention Excite(Chefer et al. 2023), Initno(Guo et al. 2024a),
Golden noise(Zhou et al. 2024), and RewardSelect(Karthik
et al. 2023), ensuring fair comparisons across methods.

Qualitative Analysis We demonstrate the performance
evolution during the optimization process in Fig.2. The opti-
mized images progressively exhibit higher semantic fidelity
and improved image quality throughout the process. Fig. 1

presents a qualitative comparison of generated images by
Vanilla SDv2.1, Whole Inversion, Zigzag, Golden noise, Re-
wardSelect, and our proposed SOE on semantically complex
prompts. Visual comparisons demonstrate that images gen-
erated by SOE exhibit superior semantic fidelity to the key
concepts and higher image quality compared to the base-
lines.

Quantitative Analysis Tables 1 and 2 summarize the
quantitative results of SOE and baseline methods across
three datasets (HPDv2, PickaPic, and Drawbench) on the
SDv2.1 and SDXL models. SOE achieves the highest scores
across all evaluation metrics for all datasets, with the over-
all optimal AG. This demonstrates that SOE consistently
outperforms baseline methods in both semantic alignment
and visual quality. In particular, SOE exhibits significant ad-
vantages in semantic alignment compared to RewardSelect,
the most competitive baseline method. On the Drawbench
dataset, SOE achieves an AG score of 3.8969 on SDv2.1,
outperforming RewardSelect by 0.8010; on SDXL, its AG
score is 1.3876, exceeding RewardSelect by 0.5173 and
Golden noise by 0.5116. On the PickaPic dataset, SOE’s
AG score on SDv2.1 is 2.9276, surpassing RewardSelect by
0.4583 and Z-sampling by 2.5879. On the HPDv2 dataset,
SOE scores 1.5637 (ImageReward) and 30.6562 (HPSv2) on
SDXL, and 1.3405 (ImageReward) and 27.5156 (HPSv2) on
SDv2.1.

Ablation Study We conducted ablation experiments on
the components of SOE and several influencing factors.
These ablation studies analyze the number of seeds per it-
eration, optimization epochs.



Dataset Method ClipScore ImageReward PickScore AES HPSv2 Average Gain
SDXL 0.3428 0.9760 22.6731 5.7909 28.7969 -

Z-Sampling 0.3426 1.0364 22.6271 5.8315 29.8381 0.1024
Whole-inversion 0.3426 1.0305 22.4848 5.7853 29.7812 0.0802

RewardSelect 0.3438 1.2617 22.7531 5.8441 29.8438 0.3447
Golden noise 0.3396 0.9677 22.6845 5.8362 29.2344 0.0057

HPDv2

SOE 0.3462 1.5637 22.9218 5.8373 30.6562 0.6956
SDXL 0.3396 0.9114 22.3555 5.8959 29.2656 -

Z-Sampling 0.3413 1.0268 22.3594 5.9605 30.0000 0.1678
Whole-inversion 0.3429 1.0477 22.2895 5.8917 30.1250 0.1850

RewardSelect 0.3411 1.2026 22.5529 5.9340 29.8594 0.3595
Golden noise 0.3378 0.9546 22.3650 5.9640 29.2969 0.0551

PickaPic

SOE 0.3463 1.5372 22.6197 5.9531 30.9062 0.7839
SDXL 0.3291 0.7474 22.2788 5.4963 27.4062 -

Z-Sampling 0.3457 0.9862 22.7656 5.6255 29.7656 0.5014
Whole-inversion 0.3318 0.8983 22.2792 5.5274 28.6406 0.2608

RewardSelect 0.3485 1.2638 22.9922 5.5526 29.5469 0.8703
Golden noise 0.3448 1.0070 22.8444 5.6340 29.2188 0.5116

Drawbench

SOE 0.3539 1.5959 23.1969 5.6032 30.5938 1.3876

Table 2: Quantitative comparison results of SOE with comparative methods using SDXL on Pick-a-Pic, DrawBench, and
HPDv2 datasets.

Number of seed per iteration and optimization epoch
Fig. 3 illustrates the impact of the number of noise seeds
per iteration. Building on earlier experiments validating the
effectiveness of SOE over baseline models, we further ex-
plore an intriguing question: how many seeds are needed for
a weaker early-stage model like SDv2.1 to surpass a stronger
model such as SDXL? On the ImageReward metric, SDv2.1
requires only 3 seeds to exceed the average performance of
vanilla SDXL, whereas at least 12 seeds are necessary to
outperform SDXL on ClipScore. Additionally, experiments
on the number of iterations show that increasing the number
of rounds improves ImageReward scores, but yields limited
gains on ClipScore.

Discussion and Limitations
Although our method demonstrates strong performance
across various tasks, no approach is universally optimal in
the context of multi-objective optimization. Therefore, sev-
eral limitations remain. First, SOE relies on both evalua-
tion models and reverse-diffusion-based local optimization.
While this study focuses on text-to-image diffusion mod-
els, extending to other domains such as video generation,
molecular synthesis, or 3D generation will require domain-
specific and more robust evaluators. Second, experimental
results show that as the improvement of the base diffusion
models, the gains from noise optimization tend to diminish.
Nevertheless, our method consistently outperforms existing
approaches across multiple benchmarks. Finally, similar to
other local optimization methods, SOE incurs increased run-
time due to extensive sampling operations. Although batch

parallel generation can accelerate the process, it consumes
more GPU memory. In this study, we adopted serial gen-
eration (with FP16 precision in SDv3.5 to reduce memory
usage), and future work may explore more efficient parallel
strategies.

Conclusion

In this study, we introduce Seed Optimization based on Evo-
lution (SOE), a global noise optimization strategy for text-
to-image generation that requires no fine-tuning of the gen-
erative model. The approach leverages a critic model to se-
lect two seed vectors with complementary advantages, inte-
grating inversion-based local optimization for fine-grained
feature exploration and inter-seed sampling for global noise
space coverage, thus forming an evolutionary optimization
framework. Extensive experiments on HPDv2, PickaPic,
and Drawbench datasets demonstrate that SOE, when ap-
plied to the SDXL model, significantly outperforms the
vanilla SDXL. Compared with state-of-the-art methods such
as RewardSelect, SOE maintains high-quality generation
while demonstrating more comprehensive noise space ex-
ploration through its dual-seed collaborative search mecha-
nism, highlighting the advantage of balancing local feature
optimization and global structure search. We hope this work
not only provides new perspectives on seed optimization
in generative modeling but also encourages future research
on balanced multi-objective optimization mechanisms and
robust evaluation models across diverse preference dimen-
sions.
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