CoNet: Collaborative Cross Networks for Cross-Domain Recommendation

Guangneng Hu*, Yu Zhang, and Qiang Yang

CIKM 2018 Oct 22-26 (Mo-Fr), Turin, Italy

Recommendations Are Ubiquitous: Products, Medias, Entertainment...

• Amazon

- 300 million customers
- 564 million products
- Netflix
 - 480,189 users
 - 17,770 movies
- Spotify
 - 40 million songs
- OkCupid
 - 10 million members

Typical Methods: Matrix Factorization (Koren KDD'08, KDD 2018 TEST OF TIME award)

Probabilistic Interpretations: PMF

• The objective of matrix factorization

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \sum_{r_{ui}\neq 0} \left(r_{ui} - \hat{r}_{ui} \right)^2 + \lambda (||\boldsymbol{P}||_{Frob}^2 + ||\boldsymbol{Q}||_{Frob}^2)$$

- Probabilistic interpretations (PMF)
 - Gaussian observations & priors
- Log posterior distribution

$$P_{u}$$

$$P_{u}$$

$$P_{u}$$

$$P_{u}$$

$$r_{ui}$$

$$i \in [n]$$

$$u \in [m]$$

$$\sigma^{2}$$

$$\ln p(\Theta|\mathbf{R}, \Phi) = -\frac{1}{2\sigma^2} \sum_{u,i} \delta(r_{ui}) (r_{ui} - \mathbf{P}_u^T \mathbf{Q}_i)^2 - \frac{1}{2\sigma_0^2} \left(||\mathbf{P}||_{Frob}^2 + ||\mathbf{Q}||_{Frob}^2 \right)$$

 Maximum a posteriori (MAP) estimation ← → Minimizing sum-ofsquared-errors with quadratic regularization (Loss + Regu)

Limited Expressiveness of MF: Example I

- Similarity of user u4:
 - Given: <u>Sim(u4,u1) ></u> <u>Sim(u4,u3) > Sim(u4,u2)</u>
 - Q: Where to put the latent factor vector p4?
- MF can not capture highly nonlinear
 - Deep learning, nonlinearity

Xiangnan He et al. Neural collaborative filtering. WWW'17

Limited Expressiveness of MF: Example II

- Transitivity of user U3:
 - Given: <u>U3 close to item v1</u> and v2
 - Q: Where v1 and v2 should be?
- MF can not capture transitivity
 - Metric learning, triangle inequality

Cheng-Kang Hsieh et al. Collaborative metric learning. WWW'17

Modelling Nonlinearity: Generalized Matrix Factorization

- Matrix factorization as a single layer **linear** neural network
 - <u>Input</u>: one-hot encodings of the user and item indices (u, i)
 - Embedding: embedding matrices (P, Q)
 - <u>Output</u>: Hadamard product between embeddings with an identity activation and a fixed all-one vector h
- Generalized Matrix Factorization
 - Learning weights **h** instead of fixing it
 - Using non-linear activation (e.g., sigmoid) instead of identity

Hadamard product

Go Deeper: Neural Collaborative Filtering

 Stack multilayer feedforward NNs to learn highly non-linear representations

$$f(\boldsymbol{x}_{ui}|\boldsymbol{P}, \boldsymbol{Q}, \theta_f) = \phi_o(\phi_L(...(\phi_1(\boldsymbol{x}_{ui}))...))$$
 2nd laye

 Capture the complex useritem interaction relationships via the expressiveness of multilayer NNs

Xiangnan He et al. Neural collaborative filtering. WWW'17

Collaborative Filtering Faces Challenges: Data Sparsity and Long Tail

- Data sparsity
 - Netflix
 - 1.225%
 - Amazon
 - 0.017%
- Long tail
 - Pareto principle (80/20 rule):
 - A small proportion (e.g., 20%) of products generate a large proportion (e.g., 80%) of sales

A Solution: Cross-Domain Recommendation

- Two domains
 - A target domain (e.g., Books domain) R={(u,i)},
 - A related source domain (e.g., Movies domain) {(u,j)}
- Probability of a user prefers an item by two factors
 - His/her individual preferences (in the target domain), and
 - His/her behavior in a related source domain

$$\hat{r}_{ui} \triangleq p(r_{ui} = 1 | u, [j]^u)$$

Typical Methods: Collective Matrix Factorization (Singh & Gordon, KDD'08)

- User-Item interaction matrix **R**
- Relational domain: Item-Genre content matrix **Y**
- Sharing the **item-specific** latent feature matrix **Q**

movie	budget	gross		genre		year
Goodfellas	25M	47M		crime		1990
My Cousin Vinny	IIM	64M		omedy		1992
Clue	I5M	I5M	c	amedy	y	1985

Deep Methods: Cross-Stitch Networks (CSN)

• Linear combination of activation maps from two tasks

$$\tilde{a}_A^{ij} = \alpha_S a_A^{ij} + \alpha_D a_B^{ij}, \quad \tilde{a}_B^{ij} = \alpha_S a_B^{ij} + \alpha_D a_A^{ij},$$

- Strong assumptions (SA)
 - <u>SA 1</u>: Representations from other network are *equally important* with weights being all the same scalar
 - <u>SA 2</u>: Representations from other network are **all useful** since it transfers activations from every location in a dense way

The Proposed Collaborative Cross Networks

- We propose a novel deep transfer learning method, Collaborative Cross Networks, to
 - Alleviate the data sparsity issue faced by the deep collaborative filtering
 - By transferring knowledge from a related source domain
 - Relax the strong assumptions faced by the existing cross-domain recommendation
 - By transferring knowledge via a matrix and enforcing sparsity-induced regularization

Idea 1: Using a matrix rather than a scalar (used in cross-stitch networks) to transfer

• We can relax the <u>SA 1</u> assumption (equally important)

$$\boldsymbol{a}_{app}^{l+1} = \sigma(\boldsymbol{W}_{app}^{l}\boldsymbol{a}_{app}^{l} + \boldsymbol{H}^{l}\boldsymbol{a}_{news}^{l}),$$
$$\boldsymbol{a}_{news}^{l+1} = \sigma(\boldsymbol{W}_{news}^{l}\boldsymbol{a}_{news}^{l} + \boldsymbol{H}^{l}\boldsymbol{a}_{app}^{l})$$

Idea 2: Selecting representations via sparsityinduced regularization

• We can relax the <u>SA 2</u> assumption (all useful)

The Architecture of the CoNet Model

• A version of three hidden layers and two cross units

Model Learning Objective

• The likelihood function (randomly sample negative examples)

$$L(\Theta|\mathcal{S}) = \prod_{(u,i)\in \mathbf{R}_T^+} \hat{r}_{ui} \prod_{(u,i)\in \mathbf{R}_T^-} (1-\hat{r}_{ui})$$

• The negative logarithm likelihood $\leftarrow \rightarrow$ Binary cross-entropy loss

$$\mathcal{L} = -\sum_{(u,i)\in\mathcal{S}} r_{ui} \log \hat{r}_{ui} + (1 - r_{ui}) \log(1 - \hat{r}_{ui}),$$

Stochastic gradient descent (and variants)

$$\Theta^{new} \leftarrow \Theta^{old} - \eta \frac{\partial L(\Theta)}{\partial \Theta}$$

Model Learning Objective (cont')

• Basic model (CoNet)

$$\mathcal{L}(\Theta) = \mathcal{L}_{app}(\Theta_{app}) + \mathcal{L}_{news}(\Theta_{news})$$

- Adaptive model (SCoNet)
 - Added the sparsity-induced penalty term into the basic model
- Typical deep learning library like TensorFlow (<u>https://www.tensorflow.org</u>) provides automatic differentiation which can be computed by chain rule in back-propagation.

Complexity Analysis

• Model analysis

The model parameters Θ include $\{P, (H^l)_{l=1}^L\} \cup \{Q_{app}, (W_{app}^l, b_{app}^l)_{l=1}^L, h_{app}\} \cup \{Q_{news}, (W_{news}^l, b_{news}^l)_{l=1}^L, h_{news}\},\$

- Linear with the input size and is close to the size of typical latent factors models and neural CF approaches
- Learning analysis
 - Update the target network using the target domain data and update the source network using the source domain data
 - The learning procedure is similar to the cross-stitch networks. And the cost of learning each base network is approximately equal to that of running a typical neural CF approach

Dataset and Evaluation Metrics

Dataset	#Users		Target Domain		Source Domain			
		# Items	#Interactions	Density	#Items	#Interactions	Density	
Mobile	23,111	14,348	$1,\!164,\!394$	0.351%	29,921	$617,\!146$	0.089%	
Amazon	80,763	93,799	1,323,101	0.017%	$35,\!896$	963,373	0.033%	

• Mobile: Apps and News

performance

• Amazon: Books and Movies

$$HR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \delta(p_u \le topK),$$

$$NDCG = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{\log 2}{\log(p_u + 1)},$$

$$MRR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{p_u}.$$

Baselines

- BPRMF: Bayesian personalized ranking
- MLP: Multilayer perceptron
- MLP++: Combine two MLPs by sharing the user embedding matrix
- CDCF: Cross-domain CF with factorization machines
- CMF: Collective MF
- CSN: The cross-stitch network

Baselines	Shallow method	Deep method
Single-domain	BPRMF [36]	MLP [13]
Cross-domain	CDCF [24], CMF [37]	MLP++, CSN [27]

Comparing Different Approaches

- CSN has some difficulty in benefitting from knowledge transfer on the Amazon since it is inferior to the non-transfer base network MLP
- The proposed model outperforms baselines on real-world datasets under three ranking metrics

Dataset	Metric	BPRMF	CMF	CDCF	MLP	MLP++	CSN	CoNet	SCoNet	improve
Mobile	\mathbf{HR}	.6175	.7879	.7812	.8405	.8445	.8458*	.8480	.8583	1.47%
	NDCG	.4891	.5740	.5875	.6615	.6683	.6733*	.6754	.6887	2.29%
	MRR	.4489	.5067	.5265	.6210	.6268	.6366*	.6373	.6475	1.71%
Amazon	HR	.4723	.3712	.3685	.5014	.5050*	.4962	.5167	. <mark>5338</mark>	5.70%
	NDCG	.3016	.2378	.2307	.3143	$.3175^{*}$.3068	.3261	.3424	7.84%
	MRR	.2971	.1966	.1884	.3113*	.3053	.2964	.3163	.3351	7.65%

Impact of Selecting Representations

- Configurations are {16, 32, 64} * 4, on Mobile data
- Naïve transfer learning approach may confront the negative transfer
- We demonstrate the necessity of adaptively selecting representations to transfer

Benefit of Transferring Knowledge

- The more training examples we can reduce, the more benefit we can get from transferring knowledge
- Our model can reduce tens of thousands training examples by comparing with non-transfer methods without performance degradation

Dataset	Method	Redu	lction	HB	NDCC	MBB	
Dataset	Method	percent	amount	1110	NDOG	wittit	
Mobile	MLP	0%	0	.8405	.6615	.6210	
	SCoNet	0%	0	.8547	.6802	.6431	
		2.05%	23,031	.8439	.6640	.6238	
		4.06%	45,468	.8347*	.6515*	.6115*	
Amazon	MLP	0%	0	.5014	.3143	.3113	
	SCoNet	0%	0	.5338	.3424	.3351	
		1.11%	12,850	.5110	.3209	.3080*	
		2.18%	25,318	.4946*	.3082*	.2968*	

Analysis: Ratio of Zeros in Transfer Matrix H

- The percent of zero entries in transfer matrix is 6.5%
- A 4-order polynomial to robustly fit the data
- It may be better to transfer many instead of all representations

Conclusions and Future Works

- In general,
 - Neural/Deep approaches are better than shallow models,
 - Transfer learning approaches are better than non-transfer ones,
 - Shallow models are mainly based on MF techniques,
 - Deep models can be based on various NNs (MLP, CNN, RNN),
- Future works,
 - Data privacy
 - Source domain can not share the raw data, but model parameters
 - Transferable graph convolutional networks

Thanks!

Q & A

Acknowledgment: SIGIR Student Travel Grant