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Deep learning meets recommender systems

• Learning user and item representations (recsys) by representation 
learning (deep learning)
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Deep learning with small data 

Extensive rating data in English domain Limited rating data in Chinese domain

knowledge 
transfer
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Transfer unit
across domains

Base network 
for source domain

Base network 
for target domain

Deep knowledge transfer

• Base network
• Answering how to model the 

individual domain

• Transfer unit
• Answering “what to transfer” 

across domains

• Joint learning
• Training base networks and 

transfer unit in end-to-end way
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Feature representation transfer: strategies

=

Identity transfer: No adaptation
(Pan et al, AAAI’10)

pre-trained features: No fine-tuning 

Source features Target features

Nonlinear transfer: Dilated MLP
(Man et al, IJCAI’17)

Linear transfer
(Liu et al, AAAI’18; Li & Tuzhilin, WSDM’20)
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Challenges

• Heterogeneity 
• Different word distributions and 

feature space across domains

• Effective neural architecture 
• Avoiding negative transfer

• Reducing risks of overfitting
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Proposed TrNews

• The key: Translator

• Translator: mapping user reps from 
source to target domain
• attack heterogeneous feature space

• Translator: bottleneck architecture
• deep layers

• reduce overfitting risks

• compress feature representations
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Methodology

• Training phase: learn translator

• Inference phase: use translator

෨𝜙𝑆 𝑢 = De En 𝜙𝑆 𝑢Step 1: mapping

𝜙𝑇 𝑢 − ෨𝜙𝑆 𝑢
𝐹

2Step 2: supervised
loss 

𝜙𝑇 𝑢∗ ≜ De En 𝜙𝑆 𝑢∗

𝑤ℎ𝑒𝑟𝑒 𝑢∗ 𝑖𝑠 𝑐𝑜𝑙𝑑 𝑠𝑡𝑎𝑟𝑡 𝑢𝑠𝑒𝑟 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑜𝑚𝑎𝑖𝑛
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Datasets

• Cheetah Mobile (geolocations: New York, Florida, Texas, California)

• News reading logs of users collected in January of 2017 with 

• Top two categories (political & daily) used as the cross corpora 

• mean length of news articles = 12 words 

• mean length of user history = 45 articles

• Microsoft MIND (small version)
• The clicked historical news articles are positive examples 

• Top two categories (news & sports) of news used as the cross corpora 

• mean length of news articles =  40 words 

• mean length of user history = 13 articles

12



Experiments with SOTA baselines

• POP is competitive

• Neural methods are better than shallow LR (logistic regression)

• TrNews is the best with large improvement
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Experiments with transfer baselines

• Adaptation is better than 
No adaptation

• Nonlinear transfer may 
worse than linear transfer

• Bottleneck architecture is 
superior than dilated one

Linear 

transfer

Nonlinear: 
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No 

adaptation

Nonlinear: 

Bottleneck
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candidate newshistorical news of user
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Visualization & explanation

• Short-term user interests: latest three matter the most

• Long-term user interests: oldest two still impact

• Filter out irrelevant articles from history
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Thanks!

Q & A
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