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Recommender systems (RSs) provide an effective way of alleviating the information overload problem by

selecting personalized items for different users. Latent factors-based collaborative filtering (CF) has become

the popular approaches for RSs due to its accuracy and scalability. Recently, online social networks and user-

generated content provide diverse sources for recommendation beyond ratings. Although social matrix fac-

torization (Social MF) and topic matrix factorization (Topic MF) successfully exploit social relations and item

reviews, respectively; both of them ignore some useful information. In this article, we investigate the effec-

tive data fusion by combining the aforementioned approaches. First, we propose a novel model MR3 to jointly

model three sources of information (i.e., ratings, item reviews, and social relations) effectively for rating pre-

diction by aligning the latent factors and hidden topics. Second, we incorporate the implicit feedback from

ratings into the proposed model to enhance its capability and to demonstrate its flexibility. We achieve more

accurate rating prediction on real-life datasets over various state-of-the-art methods. Furthermore, we mea-

sure the contribution from each of the three data sources and the impact of implicit feedback from ratings,

followed by the sensitivity analysis of hyperparameters. Empirical studies demonstrate the effectiveness and

efficacy of our proposed model and its extension.
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1 INTRODUCTION

For all the benefits of the information abundance and communication technology, the “information
overload” is one of the digital-age dilemmas we are confronted with. Recommender systems (RSs)
are instrumental in tackling this problem (Sarwar et al. 2001; Linden et al. 2003; Adomavicius
and Tuzhilin 2005; Mnih and Salakhutdinov 2007; Koren et al. 2009). They help offer potential
interesting information to individual consumers and allow online users to quickly find the per-
sonalized information that fits their needs. RSs are nowadays ubiquitous in various domains and
e-commerce platforms. They are used to recommend books at Amazon.com (Linden et al. 2003),
music at Last.fm and Pandora.com, movies at Netflix.com (Bennett and Lanning 2007), videos at
YouTube.com, and resources in scientific community (Fang and Si 2011).

Collaborative filtering (CF) approaches play a central role in traditional RSs, which are exten-
sively investigated in research community and widely used in industry (Sarwar et al. 2001; Linden
et al. 2003; Adomavicius and Tuzhilin 2005; Ekstrand et al. 2011). They are based on the simple
intuition that if users rated items similarly in the past, then they will be likely to rate other items
similarly in the future. Latent factors CF, which learns a latent vector of preferences for each user
and a latent vector of attributes for each item, gains popularity and becomes the standard model
for recommender due to its accuracy and scalability (Mnih and Salakhutdinov 2007; Koren 2008;
Koren et al. 2009). CF models, however, suffer from data sparsity and the imbalance of ratings.
They perform poorly on cold users and cold items for which there are no or few data.

To overcome these weaknesses, additional sources of information are integrated into RSs. So-
cial networking and knowledge sharing sites like Twitter.com, Facebook.com, Epinions.com, and
Ciao.com are popular platforms for users to connect to each other, to participate in online activ-
ities, and to generate shared content or opinions (Li et al. 2015). Social relations (Ma et al. 2008;
Jamali and Ester 2011; Bao et al. 2014a; Tang et al. 2013b; Guo et al. 2015), and item reviews (Jakob
et al. 2009; Ganu et al. 2009; Wang and Blei 2011; McAuley and Leskovec 2013; Bao et al. 2014b) pro-
vide independent and diverse sources for recommendation beyond the explicit rating information
source, which present both opportunities and challenges for traditional RSs. One research thread,
which we call topic matrix factorization (Topic MF), is to integrate ratings with item contents or
reviews text (Jakob et al. 2009; Ganu et al. 2009; Wang and Blei 2011; McAuley and Leskovec 2013;
Bao et al. 2014b). Reviews justify the rating behavior of a user; ratings are associated with item
attributes that can be revealed from reviews. Topic MF methods combine latent factors in ratings
with latent topics in item reviews. Another research thread, which we call social matrix factoriza-

tion (Social MF), is to combine ratings with social relations (Ma et al. 2008, 2009; Jamali and Ester
2011; Bao et al. 2014a; Tang et al. 2013b; Guo et al. 2015). Extensive studies have found higher like-
lihood of establishing social ties among people having similar characteristics, namely the theory
of homophily, and homophilous ties become effective means of social influence (Tang et al. 2013a).
Social MF methods factorize rating matrix and social matrix simultaneously assuming that both
matrices share the common latent user space. Nevertheless, both Social MF and Topic MF ignore
some useful information, either item reviews or social relations.

Contrast to integrating more data sources into RSs, another way is to mine the limited data
information more deeply. For example, the SVD++ (Koren 2008) model factorizes only the rating
matrix and exploits the implicit feedback from it. Item ratings tell us how a user rated an item,
i.e., an explicit rating score (e.g., from 1 to 5) to indicate her preference degree. Moreover, implicit
feedback is associated with these explicit rating scores, telling us which items the user rated. Users
chose to indicate their preferences implicitly by voting a rating, leaving the rating high or low
alone. In another way, users who have rated the same/similar set of items are more likely to have
similar preferences than those who have not, in an a priori sense. The TrustSVD (Guo et al. 2015)
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model employs rating and social relation data sources and exploits the implicit feedback from
both of them. These methods mines the limited data sources deeply and achieves good results
comparing to the shallow mining.

A recent work (Chen et al. 2014) adopts CTR (collaborative topic regression, one of the Topic
MF methods) (Wang and Blei 2011) to exploit ratings and reviews, and adopts SoReg (social reg-

ularization, one of the Social MF methods) (Ma et al. 2011) to exploit ratings and social relations.
Experimental results show performance improvements compared to the two individual compo-
nents. Similar methods are also proposed for tag recommendation (Wang et al. 2013) and article
recommendation (Purushotham et al. 2012). These methods, however, have two limitations. First,
the two components they used are not effective. For example, some improved components were
proposed like HFT (hidden factors and topics, one of the Topic MF methods) (McAuley and Leskovec
2013) to exploit item reviews and LOCABAL (local and global, one of the Social MF methods) (Tang
et al. 2013b) to exploit social relations. Second, they did not mine the data sources more deeply
like incorporating implicit feedback from ratings, though RSs can indeed benefit from implicit in-
formation; and this benefit has already been demonstrated like in the SVD++ (Koren 2008; Koren
et al. 2009) and the TrustSVD (Guo et al. 2015) models. In this article, we attempt to overcome these
two drawbacks.

Contributions. First, we investigate the effectiveness of fusing social relations and reviews to
rating prediction in a novel way, inspired by the complementarity of the two independent sources
for recommendation. The core idea is the alignment between latent factors found by Social MF
and hidden topics found by Topic MF to form a unified model. Through latent factors and hidden
topics we can learn the representations of user entity and item entity from heterogenous data
sources; and the connections among data sources can be reflected in the dependencies among
these representations. In this way, we can gain the maximum benefits from all of the information
effectively.

Second, we mine the data more deeply by incorporating implicit feedback from ratings into the
proposed model to enhance its capability and to demonstrate its flexibility. The core idea is to learn
an extra implicit feature matrix to consider the influence of rated items. Due to the sparseness
of data, users who have few data will have latent features close to the average, leading to their
predicted ratings close to the items’ average. Through the implicit features, the users’ rated items
will have an a priori impact on their ratings with respect to unseen items.

Our main contributions are outlined as follows:

—Proposing a novel model MR3 to jointly model user-item ratings, social network structure,
and item reviews for rating prediction and along with an extended Social MF method, which
exploits the ratings and social relations more tightly by capturing the graph structure of
neighbors; the MR3 model integrates two effective components. (Section 4)

—Extending the proposed model to obtain a new model MR3++ by incorporating implicit
feedback from ratings to enhance its capability and to demonstrate its flexibility; the exten-
sion model mines the limited information more deeply by introducing implicit features that
captures the influence of rated items. (Section 5)

—Adapting an alternating optimization algorithm to learn the proposed models that contain
different kinds of parameters. (Section 6)

—Evaluating the proposed models extensively on two real-world datasets to demonstrate their
performance and to understand their working. (Section 7)

A preliminary version of the work, i.e., MR3, has been published in Hu et al. (2015). In this
journal submission, we have extended our previous conference paper from the following aspects.
First, we propose a new model MR3++ by incorporating implicit feedback from ratings to mine
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23:4 G.-N. Hu et al.

the limited information more deeply (Section 5). Second, we refine the preliminaries (Section 3)
and abstract the learning processing (Section 6) which are suitable for both MR3 and MR3++.
Third, we evaluate the newly proposed model extensively on two real-world datasets, including:
(i) prediction performance (Section 7.3.2), (ii) impact of implicit feedback (Section 7.4.3) and its
comparison with contribution of more data sources (Section 7.4.4), and (iii) the hyperparameters
analysis (Section 7.5.2). Finally, we give further analysis of contributions from auxiliary sources of
data (Section 7.4.2).

The organization of this article is as follows. We first review related works in Section 2. We
introduce the notation and preliminaries in Section 3. We present details of the proposed model in
Section 4, and its extension to incorporate implicit feedback in Section 5. Their learning processes
are described in Section 6. In Section 7, we demonstrate our methods empirically on two real-life
datasets. We give concluding remarks and discussion of some future work in Section 8.

2 RELATED WORKS

We review some related works on CF-based RSs, which are divided into four categories according
to information sources they exploit among ratings, reviews, and social relations. Implicit feedback
from ratings is also reviewed in the corresponding category.

Collaborative filtering. CF recommender approaches have two types: memory-based CF and
model-based CF (Adomavicius and Tuzhilin 2005; Ekstrand et al. 2011). They both assume that
if users rated items similarly in the past, then they will be likely to rate other items similarly
in the future. Memory-based CF methods are grouped into user-based CF and item-based CF.
The former predicts the rating of an active user based on the ratings of other similar users on
the item (Breese et al. 1998), while the latter based on the ratings of other similar items given by
the same user (Sarwar et al. 2001; Linden et al. 2003). And the two kinds of memory-based CF can
be unified by similarity fusion in a generative probabilistic model (Wang et al. 2006). The similarity
between two users or two items can be measured by Pearson correlation or cosine similarity from
past rating history. Model-based CF learns a model from past ratings and then uses the learned
model to predict unseen ratings. Latent semantics models (Hofmann 2004) are some early repre-
sentative model-based CF. And latent factors CF or MF-based CF, which learns a latent vector of
preferences for each user and a latent vector of attributes for each item, gains popularity and be-
comes the standard model for recommender due to its accuracy and scalability (Koren et al. 2009;
Mnih and Salakhutdinov 2007). These MF techniques include maximum margin MF (Rennie and
Srebro 2005), nonnegative MF (Gu et al. 2010), and collective MF (Singh and Gordon 2008). A relax-
ation on the assumption that interprets ratings as numerical values is to interpret them as ordinal
ones (Koren and Sill 2011).

Implicit feedback from ratings can readily be added into the basic MF-based CF models (Koren
2008; Mnih and Salakhutdinov 2007; Rendle 2010). The intuition behind the implicit information
from ratings is that users who have rated the same/similar items are more likely to have similar
preferences than those who have not, in an a priori sense. Another way to exploit implicit feedback
from ratings is to deduce the preference-confidence pairs from the raw observed ratings (Hu et al.
2008). The observed rating data is treated as an indication of positive and negative preferences
associated with varying confidence levels. The resulting objective function sums over all the full
matrix entries rather than over the only observed ones (Liu et al. 2010). CF models, however, suffer
from data sparsity and the imbalance of ratings; and they perform poorly on cold users and cold
items for which there are no or few data. Currently, there are mainly two threads to alleviate these
problems: topic MF integrating reviews text information and social MF integrating social network
information.
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Topic matrix factorization. One research thread, which we call Topic MF, is to integrate ratings
with item contents or reviews text (Wang and Blei 2011; Gopalan et al. 2014; McAuley and Leskovec
2013; Ling et al. 2014; Bao et al. 2014b). Early works (Jakob et al. 2009; Ganu et al. 2009) extract the
fine-grained ratings of item aspects from online reviews and then use them as content-based fea-
tures for CF. Aspects of a movie have actors, genres, and visual effects; aspects of a restaurant have
price, cleanness, and service; and aspects of a hotel have location, cleanliness, and room view. The
extraction of aspects needs domain knowledge and some amount of manual interaction. Besides
item reviews, topic modeling approaches have been incorporated into RSs to find the hidden topics
of documents like scientific articles (Blei et al. 2003; Wang and Blei 2011; Gopalan et al. 2014). Such
methods are belonging to One-Class CF (Pan et al. 2008), where the dimensions they discover are
not correlated with ratings.

In recent works, some authors adopt latent Dirichlet allocation (LDA) (McAuley and Leskovec
2013) or nonnegative matrix factorization (NMF) (Bao et al. 2014b) to learn latent topic factors from
item reviews and meanwhile adopt a MF model to exploit the ratings. To bridge the topic-specific
factors and rating-specific factors, softmax transformations/exponential functions are proposed to
link the two. These methods assume that the dimensionality discovered in ratings is the same as
that found in reviews. Ling et al. (2014) replaced the MF model with a mixture of Gaussian to avoid
the difficult choice of the transformations; Xu et al. (2014) used the co-clustering of user community
and item group to generate the rating distributions and topic distributions, allowing the different
dimensionality of user factors and item factors; and Diao et al. (2014) introduced the aspect-based
model to link the interest distribution of users and the content distribution for movies, allowing the
dimensionality of the two to be different. In general, Topic MF methods combine latent factors in
ratings with latent topics in item reviews. Nevertheless, Topic MF ignores some useful information,
e.g., social relations.

Social matrix factorization. Another research thread, which we call Social MF, is to combine
ratings with social relations (Ma et al. 2008, 2011; Jamali and Ester 2011; Tang et al. 2013b; Bao et al.
2014a; Guo et al. 2015). Early work (Massa and Avesani 2007) computed the trust value between
users from the trust network to replace the similarity weight in user-based CF. Empirical results
show that RSs incorporating trust information are effective in terms of accuracy while alleviating
the cold-user problem. It’s a memory-based CF or trust-related neighborhood model and does not
study the rating matrix and the trust network systematically.

In recent works, the authors (Ma et al. 2008; Chaney et al. 2015; Tang et al. 2013b; Yang et al.
2013; Bao et al. 2014a; Guo et al. 2015) factorize the rating matrix and the social matrix simul-
taneously assuming that they share the common latent user space. They exploit the social rela-
tions from multiple views: (1) local and global (LOCABAL) view (Tang et al. 2013b) where local

perspective reveals the correlations between the user and her local neighbors, while global per-
spective indicates the reputation of users in the global network; (2) trustee and truster (TrustMF)
view (Yang et al. 2013) where the trustee model captures how others follow the rating of a user
while the truster model captures how other users affect the rating of a user; and (3) decom-
posed trust view (Bao et al. 2014a) where four trust aspects (benevolence, integrity, competence,
and predictability) are formulated to predict the trust values and the predicted trust is com-
bined with the similarity of the latent user feature vectors to get the total trust between two
users.

Another way to exploit social network information is to use it as a social regularization (SoReg),
which constrains that the latent factors of users should be close to the average of their trusted
neighbors (Ma et al. 2011). A similar work to this is also proposed in Jamali and Ester (2011) to
allow trust propagation. Nevertheless, Social MF ignores some useful information, e.g., reviews
text.
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23:6 G.-N. Hu et al.

Fig. 1. Three types of recommendation information sources. On the Ciao and Epinions datasets, there are
three kinds of data sources, i.e., rating scores, item reviews, and social relations.

Hybrid recommender approaches. There is a tendency towards hybrid approaches. The authors
in Fang and Si (2011) propose the matrix co-factorization techniques to exploit the user and the
item side information for one-class CF (Pan et al. 2008); their objective is to minimize the re-
construction loss of both user-word and item-word TFIDF weight matrix. A recent work to ex-
ploit the three types of information for recommendation (Chen et al. 2014) adopts CTR (collab-

orative topic regression, one of the Topic MF methods) (Wang and Blei 2011) to exploit ratings
and reviews, and adopts SoReg (social regularization, one of the Social MF methods) (Ma et al.
2011) to exploit ratings and social relations. Experimental results show better performance com-
pared to the two individual components. Similar methods are also proposed for tag recommen-
dation (Wang et al. 2013), celebrity recommendation (Ding et al. 2013), and article recommen-
dation (Purushotham et al. 2012). However, these models have two drawbacks. First, the two
components they used are not effective and some better components were proposed like the
HFT (hidden factors and topics, one of the Topic MF methods) model (McAuley and Leskovec
2013) and the LOCABAL (local and global, one of the Social MF methods) model (Tang et al.
2013b). Second, they did not mine the data sources more deeply like exploiting implicit feed-
back from ratings, though RSs can indeed benefit from implicit information as demonstrated by
the SVD++ model and the TrustSVD model. In this article, we attempt to overcome these two
drawbacks.

3 PRELIMINARIES

Before proposing our models, we review briefly the representative approaches to exploit the three
types of information individually. To this end, we first introduce the notations related to the three
data sources shown in Figure 1.

Notations. Suppose there areM usersP = {u1, . . . ,uM } andN itemsQ = {i1, . . . , iN }. We reserve
u,v,w to index the users, and i, j,k to index the items. Let R ∈ RM×N denote the rating matrix,
where the entry Ru,i is the rating of user u on item i , and we mark a zero if it is unknown. The
task of rating prediction is to predict the unknown/missing ratings from the observed data.

In addition to this explicit rating information, other side information sources may exist. One
such source is social relations. Users connect to others in a social network, where a link between
two users indicates their friendship or trust relation. We use T ∈ RM×M to indicate the user-user
social relations, where the entry Tu,v = 1 if user u has a relation to user v or zero otherwise.
Another side data source is item reviews. Items have affiliated content information, e.g., reviews
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Table 1. Notations

Symbol Meaning Form

M , N The number of users, and of items Scalar
L The size of the word vocabulary Scalar
P, Q The set of users, and of items Set
Nd The set of words in doc d Set
Nu The set of items rated by the user u Set
Tu The set of users trusted by the user u Set

Ru,i ,R
b
u,i Rating of item i by user u, and its implicit

binary rating
R ∈ RM×N , Rb ∈ {0, 1}M×N

Tu,v Social relation between user u and v T ∈ NM×M

wd,n The nth word in doc d Doc-term matrix, w ∈ NN×L

Wu,i Weight on the rating of item i given by user u Pre-computed,W ∈ RN×N

Cu,v Social strength (trust value) between user u
and v

Pre-computed, C ∈ RM×M

Su,v Social similarity between user u and v Pre-computed, S ∈ RM×M

F Dimensionality of latent factors/topics Hyper-parameter, scalar
Pu F -dimensional feature vector for user u Parameters, P ∈ RF×M

Qi F -dimensional feature vector for item i Parameters, Q ∈ RF×N

Yj F -dimensional implicit feature vector for item j Parameters, Y ∈ RF×N

θi F -dimensional topic distribution for item i Parameters, θ ∈ ΔF×N

ϕf ,ψf Word distribution for topic f , and the
unnormalized one

Parameters, ϕ ∈ ΔL×F

H Social correlation matrix Parameters, H ∈ RF×F

commented by users. The observed review data du,i is a piece of text of item i written by user u,
often along with a rating score Ru,i .

1

Notations used throughout the article are summarized in Table 1.
Rating information. For the information source of ratings, MF-based latent factor models (Mnih

and Salakhutdinov 2007; Koren et al. 2009) are mainly to find the latent user-specific feature ma-
trix P = [P1, . . . , PM ] ∈ RF×M and item-specific feature matrix Q = [Q1, . . . ,QN ] ∈ RF×N to ap-
proximate the observed rating matrix in the least-squares sense (more precisely, regularized least
squares or ridge regression), obtained by solving the following problem

min
P,Q

∑
Ru,i�0

(Ru,i − R̂u,i )
2
+ λ

(
‖P ‖2F ro + ‖Q ‖

2
F ro

)
, (1)

where λ is the regularization parameter to avoid over-fitting and the predicted ratings, and ‖.‖2F ro

denotes the Frobenius norm.

R̂u,i = μ + bu + bi + P
T
uQi . (2)

The parameters μ, bu , and bi are the mean of ratings, bias of the user and bias of the item, re-
spectively. The F -dimensional feature vectors Pu and Qi represent users’ preferences and items’
characteristics. The dot products capture their interaction or match degree.

1We organize these reviews as a document-term matrix w ∈ NN×L where the entry wd,n is the occurrence of token n in

doc d . For convenience, we also refer the review as du,i .
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Social information. For the information source of social relations, social MF methods (Zhu et al.
2007; Tang et al. 2013b) are mainly to find the latent social-specific feature matrix P and social
correlation matrix H ∈ RF×F to approximate the observed social similarity matrix S ∈ RM×M in
the least-squares sense, by solving the following problem2:

min
P,H

∑
Tu,v�0

(
Su,v − PT

uHPv

)2
+ λ

(
‖P ‖2F ro + ‖H ‖

2
F ro

)
, (3)

where Su,v is the social similarity between useru and her trusteev , defined as the cosine similarity
between their rating vectors

Su,v =
∑

i

Ru,i · Rv,i

/√∑
i

R2
u,i ·

∑
i

R2
v,i . (4)

The assumption to make the above method work is that the latent social-specific matrix is shared
with the latent user-specific matrix; both are referred as P here. Namely, users have dual identity:
one is involved in rating behavior and the other is involved in social behavior.

Review information. For the information source of reviews, topic modeling approaches are used
to find the item properties and hidden topics (Blei et al. 2003; McAuley and Leskovec 2013). The
negative log-likelihood (NLL) of the reviews collection is defined as3

−
N∑

d=1

∑
n∈Nd

(
logθzd,n

+ logϕzd,n,wd,n

)
, (5)

where the parameters θ and ϕ are the topic and word distributions, respectively;wd,n and zd,n are
the word and the corresponding topic in doc d . Reviews explain the ratings why the users rate in
that way. Intuitively, a certain property of the item is probably discussed by a specific distribution
of words that corresponds to a certain topic. The following softmax transformation sharpens this
intuition and also bridges the gap between the real-valued parameters Qi ∈ RF associated with
ratings and the corresponding probabilistic ones θi ∈ ΔF associated with reviews.

θi,f = exp(κQi,f )
/ F∑

f =1

exp(κQi,f ), (6)

where the parameter κ controls “peakiness” of the transformation and can be jointly learned with
other parameters.

The dependencies among data matrices and parameter matrices in three different recommenda-
tion approaches are shown in Figure 2. The left subfigure is latent factors CF approach to exploit
the rating information; the middle subfigure is social MF approach to integrate ratings with social
relations; and the right subfigure is topic MF approach to combine ratings with item reviews.

4 THE PROPOSED MODEL

In this section, we propose a model to solve the following problem. We call it Problem 1, which
requires to model three data sources simultaneously.

2We omit the term about the ratings, which is the same as that in Equation (1), to show clearly how to exploit the social

relations.
3We aggregate all reviews of a particular item as a “doc;” so the indices of docs are corresponding to those of items.
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Collaborative Filtering with Topic and Social Latent Factors 23:9

Fig. 2. Illustrations of the dependencies among data matrices and parameter matrices in three different
recommendation approaches. (a) Latent factors CF exploits ratings, (b) Social MF integrates ratings with
social relations; and (c) Topic MF integrates ratings with reviews text. Shaded nodes are data and others are
parameters.

4.1 Problem 1

Problem 1. Rating Prediction with Social Relations and Reviews.

Input: (1) a rating matrix R, (2) a social network among usersT , (3) a reviews collection along with

the ratings D, (4) a user u in the user set P, and (5) an item i in the item set Q.

Output: the predicted preference of user u on item i, where u ∈ P and i ∈ Q.

In Problem 1, to predict the unknown ratings, we have three types of information to exploit:
ratings, social relations, and item reviews.

4.2 MR3: A Model of Ratings, Item Reviews, and Social Relations

In Section 3, we have reviewed the three kinds of approaches to exploit the three kinds of infor-
mation sources individually (see Figure 2), i.e., MF-based CF for the information source of ratings
(see Equation (1), or Figure 2(a)), social MF for the information source of social relations (see
Equation (3), or Figure 2(b)), and the topic MF for the information source of item reviews (see
Equation (5), or Figure 2(c)). With these preliminaries in mind, we can present our solution to the
Problem 1, exploiting all of data sources simultaneously.

For Problem 1, the main challenge is how to fuse effectively the three heterogenous data sources
to form a unified model. We tackle this challenge by combining the two parts, i.e., Social MF and
Topic MF, described in the following. The core idea is, based on the CF, the alignment between
latent factors and hidden topics found by the above two parts.

In one part, the LOCABAL (local and global, one of the Social MF methods) model (Tang et al.
2013b) exploits the ratings and social relations by incorporating social latent factors into CF. The
goals to achieve are modeling ratings accurately and also capturing the social context, by solving
the following problem4:

min
P,Q,H

∑
Ru,i�0

Wu,i (Ru,i − R̂u,i )
2
+ λrel

∑
Tu,v�0

(
Su,v − PT

uHPv

)2
+ λΩ(Θ), (7)

where the rating weightsWu,i = 1/(1 + log ru ) are computed from the PageRank scores of users in
the social network, representing the global perspective of social context (Tang et al. 2013b), where
ru is the rank of user u in decreasing order, i.e., the top-ranked users having high ranking scores.
The regularization parameter λrel controls the contribution from social relations, parameters Θ =
{P ,Q,H }, and the regularization term is given by Ω(Θ) = ‖P ‖2F ro + ‖Q ‖

2
F ro + ‖H ‖

2
F ro .

4The global social context Wu,i is omitted here for clarity, and given in Equation (9) instead.
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In another part, the HFT (hidden factors and topics, one of the Topic MF methods)
model (McAuley and Leskovec 2013) exploits the ratings and item reviews by incorporating topic
latent factors into CF. The goals to achieve are both modeling ratings accurately and generating
reviews likely, by solving the following problem:

min
P,Q,Φ

∑
Ru,i�0

(Ru,i − R̂u,i )
2 − λrev

N∑
d=1

∑
n∈Nd

(
logθzd,n

+ logϕzd,n,wd,n

)
, (8)

where λrev controls the contribution from reviews, and parameters Φ = {θ ,ϕ}. The connection be-
tween ratings and reviews is the coupling between parametersQi and θi as shown in Equation (6).

Based on CF, we can exploit the three data sources simultaneously by combining the above two
parts (i.e., Equation (7) and Equation (8)). By aligning latent factors and topics, we connect Social
MF and Topic MF through the proposed model MR3 (model of rating, relation, and review), which
minimizes the following problem (Hu et al. 2015):

L (Θ,Φ, z,κ) �
∑

Ru,i�0

Wu,i (Ru,i − R̂u,i )
2

− λrev

N∑
d=1

∑
n∈Nd

(
logθzd,n

+ logϕzd,n,wd,n

)

+ λrel

∑
Tu,v�0

Cu,v (Su,v − PT
uHPv )

2
+ λΩ(Θ),

(9)

Beyond the LOCABAL model, we borrow the idea trust values from the SoRec method (Ma et al.
2008) to exploit the ratings and social relations more tightly

Cu,v =

√
d−v /(d

+
u + d

−
v ), (10)

where the outdegree d+u represents the number of users whom u trusts, while the indegree d−v
denotes the number of users who trust v . The trust values are used to capture the graph structure
of neighbors, representing the social influence locality, i.e., user behaviors are mainly influenced
by close/direct friends in their ego networks (Zhang et al. 2013),

Before we delve into the learning algorithm, a brief discussion on Equation (9) is in order. On
the right hand, the first term is rating squared-error weighted by user reputation in the social
network; the second term is the NLL of item reviews corpus; the third term is local social context
factorization weighted by trust values among users; and the last term is Frobenius norm penalty
of parameters to control over-fitting. The contributions from item reviews and social relations are
controlled by the two hyper-parameters λrev and λrel. The connection between ratings and social
relations is through the shared user latent feature space P , ratings and reviews are linked through
the transformation involving Q and θ as shown in Equation (6), where parameter κ controls the
peakiness of the transformation, and all of the three data sources are jointly modeling based on CF
with topic and social latent factors. The dependencies among the parameter and data matrices in
the proposed model are depicted in Figure 3. Note that the dotted line between Q and θ indicates
the fixed transformation between them (see Equation (6)) and does not exhibit any distribution
dependency; hence the figure does not describe a truly Bayesian generative model on the whole
and the purpose is to clearly display the relationship among matrices of parameters and data.
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Fig. 3. Relationship among matrices of parameters and data of the proposed model (MR3). Shaded nodes
are data (R: rating matrix, S : social similarity matrix, and D (here it is embodied by words w): doc-term
matrix of reviews). Others are parameters (P : matrix of latent user factors,Q : matrix of latent item factors,H :
social correlation matrix, θ : doc-topic distributions, and ϕ: topic-word distributions). The double connections

between P and S are indicated by the term (S − PTHP ) in Equation (3). The dotted line between Q and θ
indicates their coupling through the fixed transformation as shown in Equation (6).

eSMF. We separate the following part from the proposed model MR3 and denote it as the ex-

tended Social MF (eSMF) model (Hu et al. 2015)

L (Θ) �
∑

Ru,i�0

Wu,i (Ru,i − R̂u,i )
2

+λrel

∑
Tu,v�0

Cu,v

(
Su,v − PT

uHPv

)2
+ λΩ(Θ).

(11)

The eSMF model is the Social MF component of MR3, which extends the LOCABAL model (Tang
et al. 2013b) by capturing the graph structure of neighbors via trust values (Ma et al. 2008) repre-
senting the social influence locality (Zhang et al. 2013).

5 AN EXTENSION OF THE PROPOSED MODEL

In this section, we incorporate the implicit feedback from ratings into the proposed model to en-
hance its capability and demonstrate its flexibility, leading to a solution to the following problem.
We call it Problem 2, which requires to mine the limited information more deeply.

5.1 Problem 2

For item ratings information, they tell us how a user rated an item, i.e., an explicit rating score (e.g.,
from 1 to 5) to indicate her preference degree. Moreover, implicit feedback is always associated
with these explicit rating scores, telling us which items the user rated. In detail, a binary matrix
Rb can be constructed from the rating matrix, where the entry has one if the corresponding one
in the rating matrix is observed and zero if it is unseen. Users chose to indicate their preferences
implicitly by voting a rating, leaving the rating high or low alone. In another way, users who have
rated the same/similar items are more likely to have similar preferences than those who have not,
in an a priori sense.

With the above additional consideration, we extend the Problem 1 to reach the following
problem.
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Problem 2. Problem 1 with Implicit Feedback from Ratings.

Input: (1) a rating matrix R and its implicit matrix Rb , (2) a social network among users T , (3) a

reviews collection along with the ratings D, (4) a user u in the user set P, and (5) an item i in the item

set Q.

Output: the predicted preference of user u on item i, where u ∈ P and i ∈ Q.

By Problem 2, we define the meaning of “mine the limited information more deeply” as “exploit
the implicit feedback constructed from explicit ratings.” That is, besides learning the latent user
factors and item factors from ratings, we also learn an implicit feature vector for each item. As we
will see in Equation (12), the implicit feedback from ratings can be used as the prior preferences
of users.

5.2 MR3++: An Extension of the Proposed Model Incorporating

Implicit Feedback from Ratings

In Section 4.2, we have introduced the solution to the Problem 1. The solution is the model MR3 (see
Equation (9)), which exploits the three types of information sources simultaneously by connecting
the Social MF approach and the Topic MF approach. In this subsection, we extend the proposed
model. leading a solution to Problem 2.

The core idea of mining ratings deeply is to learn an extra implicit feature matrix Y ∈ RF×N

to consider the influence of rated items. Due to the sparseness of data, users who have few data
will have latent features close to the average, leading to their predicted ratings close to the items’
average. Through the implicit features, the users’ rated items will have an a priori impact on their
ratings with respect to unseen items. In more detail, the total preferences of useru on item i decom-
pose into two parts: one part indicates some “intrinsic preference” reflecting in her latent feature
vector Pu ; and another part shows the “influence of her rated items” captured by their implicit fea-
ture vectors Yj , where the index j denotes the set of the user’s rated items. These ideas are shaped
in the SVD++ model (Koren 2008) and the constrained PMF model (Mnih and Salakhutdinov 2007),
where the predicted ratings are now computed by (rather than by Equation (2))

R̂∗u,i = PT
uQi +

��
�
|Nu |−

1
α

∑
j ∈Nu

Yj
��
�

T

Qi + μ + bu + bi , (12)

where Nu is the set of items rated by the useru, i.e., Nu = {j : Rb
u, j = 1} andYj is the implicit feature

vector for item j. In the SVD++ model, α = 2; in the constrained PMF model, α = 1. We can see,
for example, if user u has rated the same items as those rated by user v , i.e., Nu = Nv , then in an
a priori sense, these two users are likely to have similar preferences.

The extended model contains two components: one component is to combine three kinds of data
sources (ratings, social relations, and reviews), i.e., the MR3 model; and another is to incorporate
implicit feedback from ratings and hence mining the rating source more deeply. Hence we call the
extended model MR3++, where “++” stands for extending the MR3 model by exploiting implicit
feedback from ratings. MR3++ minimizes the following problem:

L (Θ∗,Φ, z,κ) �
∑

Ru,i�0

Wu,i (Ru,i − R̂∗u,i )
2

− λrev

N∑
d=1

∑
n∈Nd

(
logθzd,n

+ logϕzd,n,wd,n

)
+ λrel

∑
Tu,v�0

Cu,v

(
Su,v − PT

uHPv

)2
+ λΩ(Θ∗),

(13)
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Fig. 4. The Extension of the Proposed Model (MR3++). Shaded nodes are data and others are parameters.

Implicit feature matrix Y ∈ RF×N is added to consider the influence of rated items. The total preferences of
a user on an item now decompose into two parts: one part indicates “intrinsic preference” reflecting in her
latent feature vector; and another part shows the “influence of her rated items” captured by their implicit
feature vectors.

where R̂∗u,i is given by Equation (12) (rather than Equation (2)), and Ω(Θ∗) = ‖P ‖2F ro + ‖Q ‖
2
F ro +

‖H ‖2F ro + ‖Y ‖
2
F ro .

The dependencies among the parameter and data matrices in the extension model are depicted
in Figure 4, where the implicit feature matrix is added compared to the proposed model.

Implicit feature matrix Y . Note that the idea of learning feature matrix Y originally (to the
best of our knowledge) comes from the NSVD model (Paterek 2007) to decrease the number of
parameters, where Y is used to replace the learning of latent user feature matrix P ; hence the
complexity of parameters is from O (MK + NK ) to O (NK ) and does not depend on the scale
of users. Besides capturing implicit feedback, Y has the effect of learning the item-item simi-
larity sim(i, j ) = YT

j Qi . The predicted rating is computed by Ru,i =
∑

j ∈Nu
sim(i, j ) + bu + bi . This

method is modified to exclude the known rating information for a given user-item pair when
estimating the similarity matrix in the FISM model (Kabbur et al. 2013). The estimated rating is
computed as Ru,i =

∑
j ∈Nu \{i } sim(i, j ) + bu + bi .

To mine the implicit feedback from ratings, we adopt the SVD++ model idea in our pro-
posed model MR3++: learning both the item-item similarity sim(i, j ) = YT

j Qi and the user-item

similarity sim(u, i ) = PT
uQi . And hence the predicted ratings are computed by Ru,i = sim(u, i ) +

|Nu |−
1
2
∑

j ∈Nu \{i } sim(i, j ) + μ + bu + bi , which is just the same with Equation (12). Combined with
the FISM model idea, we can also adopt the following rating predictor in our MR3++ model:

Ru,i = sim(u, i ) + ( |Nu | − 1)−α
∑

j ∈Nu \{i }
sim(i, j ) + μ + bu + bi ,

where α is an adjustable hyper-parameter between 0 and 1.
No matter what kind of implicit predictor is used (NSVD, SVD++, or FISM), the idea of ming the

limited data more deeply is worth keeping in mind. And this is a meaningful point for extending
the MR3 model to the MR3++ model.
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6 MODEL LEARNING

We give the optimization algorithms to learn the models (namely MR3 and MR3++) proposed in
the above two sections (MR3 in Section 4 and MR3++ in Section 5). Their learning processes are
the same except the minor difference with respect to gradients of two parameters.

6.1 Learning Process

Our objective is to search

arg min
Θ,Φ,z,κ

L (Θ,Φ, z,κ). (14)

Observe that parameters Θ = {P ,Q,H } and Φ = {θ ,ϕ} are coupled through the transformation be-
tweenQ and θ as shown in Equation (6) (the dotted line shown in Figure 3). The former parameters
Θ are associated with ratings and social relations, which can be found by gradient descent meth-
ods, while the latter parameters Φ are associated with reviews text, which can be found by Gibbs
sampling (Griffiths and Steyvers 2004). So, similar to the HFT (hidden factors and topics, one of
the Topic MF methods) model [38], we design a procedure alternating between the following two
steps:

update Θnew,Φnew,κnew = arg min
Θ,Φ,κ

L
(
Θ,Φ, zold,κ

)
; (15a)

sample znew
d,n with probability p

(
znew

d,n = f
)
= ϕnew

f ,wd,n
. (15b)

For the first step as shown in Equation (15a), topic assignments zd,n for each word in reviews
corpus are fixed; then we update the terms Θ,Φ, and κ by gradient descent (GD). Recall that θ and
Q depend on each other; we fit only Q and then determine θ by Equation (6). This is the same as
in the standard gradient-based MF for recommender (Mnih and Salakhutdinov 2007) except that
we have to compute more gradients, which will be given later separately.

For the second step as shown in Equation (15b), parameters associated with reviews corpus θ
and ϕ are fixed; then we sample topic assignments zd,n by iterating through all docs d and each
word within, setting zd,n = f with probability proportion to θd,f ϕf ,wd,n

. This is similar to updating
z via LDA (Blei et al. 2003) except that topic proportions θ are not sampled from a Dirichlet prior,
but instead are determined in the first step through Q .

Finally, the two steps are repeated until a local optimum is reached. In practice, we sample topic
assignments every 5 GD epoches and this is called a pass; usually it is enough to run 50 passes to
find a local minima. The experimental settings are detailed in the experimental section.

For MR3++, the learning process is the same with that of MR3, except that MR3++ has more
gradients to compute and other gradients related to the implicit feature matrix Y have to modify
accordingly. The learning algorithm is summarize in Algorithm 1.

6.2 Gradients of the Parameters

We now give gradients used in Equation (15a). (Gradients of biases are omitted; rating mean is not
fitted because ratings are centered before training.) Besides the notations given in Table 1, more
notations are required (Griffiths and Steyvers 2004) to learn the models.

—For each item i (i.e., doc i , generated from all reviews commented on this item): (1) Mi is an
F -dimensional count vector, in which each component is the number of times each topic
occurs for it; (2)mi is the number of words in it; and (3) zi =

∑
f exp (κQi f ) is a normalizer.

—For each word w (in the prescribed word vocabulary): (1) Nw is an F -dimensional count
vector, in which each component is the number of times it has been assigned to each topic;
(2)nf is the number of times topic f occurs for it; and (3) zf =

∑
w exp (ψf w ) is a normalizer.
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ALGORITHM 1: Learning Process of the Proposed Models

Input: Ratings R, reviews w , and relations T , number of latent factors F , maximum number of iterations

maxIter , number of epoches nEpoch.

Output: User features P , item features Q , social relation matrix H , implicit features Y , topic proportions θ ,

and topic distributions ϕ.

Pre-computeW , S , and C by Equation (4.2), (4), and (10);

Initialize P ,Q,H ,Y randomly from N (0, 0.01);

iter = 1;

repeat

for epoch = 1; epoch < nEpoch; epoch ++ do

update Θnew,Φnew,κnew = arg minΘ,Φ,κ L (Θ,Φ, zold,κ) by SGD using gradients

Equations (16)–(22);

end

sample znew
d,n

with probability p (znew
d,n
= f ) = ϕnew

f ,wd,n
;

iter ++;

until converдence (e .д., iter > maxIter or
|Lit er−Lit er+1 |

|Lit er | < 10−6);

The user-specific feature matrix P exists in three terms: the first is in the rating prediction, the
second is in the local social context, and the third is in the Frobenius norm penalty.

1

2

∂L
∂Pu
=

∑
i :Ru,i�0

Wu,i (R̂u,i − Ru,i )Qi + λPu

+ λrel

∑
v :Tu,v�0

Cu,v

(
PT

uHPv − Su,v

)
HPv

+ λrel

∑
v :Tv,u�0

Cv,u

(
PT

vHPu − Su,v

)
HTPv .

(16)

The item-specific feature matrix Q exists in three terms: the first is in the rating prediction, the
second is in the item reviews, and the third is in the Frobenius norm penalty.

∂L
∂Qi
= 2

∑
u :Ru,i�0

Wu,i (R̂u,i − Ru,i )Pu

−λrevκ
(
Mi −

mi

zi
exp (κQi )

)
+ 2λQi .

(17)

The social correlation matrix H exists in two terms: one is in the local social context, and the other
is in the Frobenius norm penalty.

1

2

∂L
∂H
= λrel

∑
Tu,v�0

Cu,v

(
PT

uHPv − Su,v

)
PuP

T
v + λH . (18)

The parameter κ controls the peakiness between Q and θ as shown in Equation (6). The differ-
entiation of L over κ is followed by the chain rule: L over θ , and then θ over κ.

∂L
∂κ
= −λrev

∑
i,f

Qi f

(
Mi f −

mi

zi
exp (κQi f )

)
. (19)

Note that ϕf is a stochastic vector, so we optimize the corresponding unnormalized vector ψf

and then get ϕf w = exp (ψf w )/zf . The unnormalized word distributions exist in the likelihood
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term of the reviews corpus.

∂L
∂ψf w

= −λrev

(
Nf w −

nf

zf
exp (ψf w )

)
. (20)

For MR3++, the gradients of the Y and Q are given below, and others are the same.
The gradients of the added implicit feature parameters Yj are computed by

1

2

∂L
∂Yj
=

∑
Ru,i�0

Wu,i |Nu |−
1
2 (R̂∗u,i − Ru,i )Qi + λYj , ∀j ∈ Nu . (21)

The gradients of the original parameters Qi are now computed by (an extra term with respect
to implicit ratings Y is added to P , compared with that in Equation (17))

∂L
∂Qi
= 2

∑
u :Ru,i�0

Wu,i (R̂∗u,i − Ru,i ) ��
�
Pu + |Nu |−

1
2

∑
j ∈Nu

Yj
��
�

−λrevκ

(
Mi −

mi

zi
exp (κQi )

)
+ 2λQi .

(22)

7 EXPERIMENTS

In the above Section 4.2 and Section 5.2, we have introduced the solutions to Problem 1 and to
Problem 2, respectively. The solution to Problem 1 is the result of the proposed model MR3 (See
Equation (9)), which exploits all three types of information simultaneously. The solution to Prob-
lem 2 is the model MR3++ (see Equation (13)), which extends the MR3 model by incorporating
implicit feedback from ratings.

In this section, we first compare our proposed eSMF model with a state-of-the-art Social MF
method to show the benefit of exploiting the graph structure of neighbors via trust values that
capture the social influence locality. Second, we demonstrate the effectiveness of the proposed
model MR3 and the improvement of its extension MR3++ over various different recommender
approaches. Further, we design experiments to see the contribution of each data source to the
proposed model and the impact of the implicit feedback, followed by sensitivity analysis of our
models to three meta parameters.

7.1 Dataset and Metric

In this section, we first introduce the two datasets used to evaluate the recommendation perfor-
mance, including the simple preprocessing and basic statistics. And then we describe the perfor-
mance metric and the evaluation protocol.

7.1.1 Datasets and Statistics. We evaluate our models on two datasets: Epinions and Ciao.5

They are both knowledge sharing and review sites, in which users can rate items, connect to
others, and give reviews on products (see Figure 1). We remove stop words6 and then select
top L = 8,000 frequent words as vocabulary; to avoid noise we reserve users who rated more
than three times and remove items that were rated by only once or twice. The items indexed in
rating matrix are aligned to documents in doc-term matrix, that is, we aggregate all reviews of a
particular item as a “doc.” Statistics of datasets are given in Table 2. We see that the rating matrices
of both datasets are very sparse, and the average length of documents is short on Epinions.

Note that the number of average words per item on Ciao is 42 times longer than that on Epinions,
and the social density on Ciao is 12 times denser than that on Epinions. So Ciao contains richer and

5http://www.public.asu.edu/∼jtang20/.
6http://www.ranks.nl/stopwords.
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Table 2. Statistics of the Datasets

Statistics Epinions Ciao Total

# of Users 49,454 7,340 56,794
# of Items 74,154 22,472 96,626
# of Ratings/Reviews 790,940 183,974 974,914
# of Social Relations 434,680 112,942 547,622
# of Words 2,246,837 28,874,000 31,120,837
Rating density 0.00022 0.0011 –
Social density 0.00018 0.0021 –
Average words per item 30.3 1284.9 –
Average relations per user 8.78 15.38 –

higher quality information in social relations and reviews. Hence we expect that social relations
and reviews contribute much more to the proposed model on the Ciao dataset. We will see the
quantitative results later (Section 7.4.4) that are consistent with this observation.

7.1.2 Evaluation Protocol and Metric. There are three kinds of parameters to be set. For
optimization-related parameters, we use mini-batch gradient descent method with momentum
to optimize the objective functions. Reference to empirical rules (e.g., Mnih and Salakhutdinov
(2007)), we set momentum = 0.8, batchSize = #training / #numOfBatches, and learning rate =
0.0007; we randomly shuffle the training data prior to each epoch. For regularization-related pa-
rameters, we use norm regularization to avoid over-fitting. According to related bibliographies
(e.g., Guo et al. (2015)), we set norm penalty λ = 0.5. For models-related parameters, these are F
that is the number of latent factors, λrev which controls the contribution from reviews, and λrel

that controls the contribution from social relations; see Section 7.5 in detail.
We randomly select x% as the training set and report the prediction performance on the remain-

ing 1−x% testing set, where x usually varies in {20, 50, 80, 90}%. The reported results are the average
values over five times independent random selection, being similar to 5-fold cross validation. All
comparing methods abide by the same evaluation protocol.

The metric root-mean-square error (RMSE) for rating prediction task is defined as

RMSET =

√∑
(u,i )∈T

(Ru,i − R̂u,i )2
/
|T |, (23)

where T is the test set. Compared with the metric mean absolute error (MAE) (Herlocker et al.
1999), RMSE puts more emphasis on large deviation than MAE (Herlocker et al. 2004). For instance,
an error deviation of 2 points increases the total sum of error by 4 under the metric RMSE, while by
2 under the metric MAE. A smaller RMSE or MAE means a better prediction performance. A small
improvement regarding RMSE could have a significant impact on the quality of recommendation
and 10% RMSE improvement led to $1M Grand Prize (Bennett and Lanning 2007; Koren 2008).

There are some other metrics used for evaluation in recommendation systems. For example, in
real-world systems we may care about a few top-items for each user and hence we use the metric
recall@K to evaluate the performance of recommending the top K items to the target user. In this
article, We think RMSE is a better metric for our task of rating prediction. In rating prediction,
we not only care about the positive preference of ratings above 4, which means the users like the
item so much, but also care about the negative preference of ratings under 1, which means that
the users do not like the item so much. However, recall@K only care about the positive preference
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Fig. 5. Comparisons of eSMF with a Social MF method on two datasets. Left: Epinions; Right: Ciao. The
figures are copied from Hu et al. (2015).

for real recommendation. We focus on the RMSE results and also report the recall results briefly
in Section 7.6.

For each user’s ratings, we randomly reserve one into the validation set, and randomly select
1 or 5 into the training set, and put the rest into the test set. The former setting is called sparse
setting and the latter is dense. We report the test result where the corresponding validation result
is the best.

Note that, for the MR3++ model extended from the proposed model MR3, the predicted ratings

R̂u,i (see Equation (2)) should be replaced by R̂∗u,i accordingly (see Equation (12)).

7.2 Comparing Social MF Methods

In this section, we first compare our proposed eSMF model with LOCABAL Tang et al. (2013b), a
state-of-the-art Social MF method, to show the benefit of exploiting the graph structure of neigh-
bors. The motivation for the comparison is two-fold: (1) to demonstrate that exploiting ratings
and social relations more tightly can further improve the performance of social RSs; (2) to form
an effective component of the proposed model MR3, which we evaluate in the following section
(Section 7.3.1).

We use grid search to determine λrel that controls the contribution from social relations and
report the best RMSE on the testing set over 50 passes. The eventually reported results are the av-
erage values over five times independent random selection of training set, being similar to five-fold
cross validation. For both LOCABAL and eSMF, we get the best RMSE when λrel = 0.1. Parameters
Θ = {P ,Q,H } are randomly initialized from the normal distribution N (0, 0.01).

The results are demonstrated in Figure 5, with varying percentage of the training set = {20, 30,
40, 50, 60, 70, 80, 90, 99} and we have the following observation:

—Exploiting ratings and social relations tightly (i.e., exploiting the graph structure of neigh-
bors via trust values capturing social influence locality) can further improve recommender
performance in terms of RMSE on both datasets. For example, eSMF obtains 1.18%, 0.89%,
and 0.72% relative improvement compared with a state-of-the-art Social MF method LOCA-
BAL on Epinions with 20%, 50%, and 70% as the training set respectively under the RMSE
metric.

7.3 Comparing Different Recommender Systems

In this section, we first demonstrate the effectiveness of the proposed model MR3 with different
recommendation approaches to show the benefit of modeling three types of data sources simulta-
neously. And then we demonstrate the improvement of its extension MR3++ to show the benefit
of incorporating implicit feedback from ratings.
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Table 3. RMSE Comparisons of the Proposed Model MR3 with Different Methods (F = 10)

Datasets Training (%)
Methods Improvement of MR3 vs.

Mean PMF HFT LOCABAL MR3 PMF (%) HFT (%) LOCABAL (%)

Epinions

20 1.2265 1.2001 1.1857 1.1222 1.1051 8.60 7.29 1.55
50 1.2239 1.1604 1.1323 1.1055 1.0809 7.35 4.76 2.28
80 1.2225 1.1502 1.0960 1.0892 1.0648 8.02 2.93 2.29
90 1.2187 1.1484 1.0867 1.0840 1.0634 7.99 2.19 1.94

Ciao

20 1.1095 1.0877 1.0439 1.0287 1.0142 7.25 2.93 1.43
50 1.0964 1.0536 1.0379 0.9930 0.9740 8.17 6.56 1.95
80 1.0899 1.0418 0.9958 0.9709 0.9521 9.42 4.59 1.97
90 1.0841 1.0391 0.9644 0.9587 0.9451 9.95 2.04 1.44

Average 8.34 4.16 1.86

This table is copied from Hu et al. (2015).

7.3.1 Comparing the Proposed Model or MR3 with Different Recommender Systems. We first
compare the proposed model MR3 introduced in Section 4.2 (see Equation (9) or Figure 3) with the
following different types of recommendation approaches to show the benefit of modeling three
data sources simultaneously:

Mean. This method predicts the rating always using the average, i.e., μ in Equation (2), across
all training ratings. This is the best constant predictor in terms of RMSE.

PMF. This method performs MF on rating matrix as shown in Equation (1) (Mnih and
Salakhutdinov 2007). It is the representative of latent factors CF (see Figure 2(a)). It only uses
the rating source.

LOCABAL. This method is based on MF and exploits local and global social context as shown in
Equation (7) (Tang et al. 2013b). It is the representative of Social MF (see Figure 2(b))7. It only uses
ratings and relations.

HFT. This method combines latent factors in ratings with hidden topics in reviews as shown in
Equation (8) (McAuley and Leskovec 2013). It is the representative of Topic MF (see Figure 2(c)). It
only uses ratings and reviews.

HFT+LOCABAL. This is the simple hybrid method of HFT and LOCABAL, which linear weights

their results: R̂u,i = αR̂H FT
u,i + (1 − α )R̂LOCABAL

u,i , where α ∈ (0, 1).
We use the source code PMF8 and HFT9 provided by their authors. For the hyperparameter

λrev that controls the contribution from item reviews, it is determined by grid search. For HFT,
λrev = 0.1; and for MR3, λrel = 0.001 and λrev = 0.05. More details about the sensitivity to meta
parameters of MR3 will be discussed later (Section 7.5.1).

In our experiments, we leave out the comparison with HFT+LOCABAL. Because the core idea
of MR3 is the alignment between latent factors found by LOCABAL and hidden topics found by
HFT to form a unified model. Theoretically, MR3 is more elegant than linear combination which is
out of our motivations. And practically, we do not intent to show the superior of our MR3 over the
linear combination. We just show the unified model MR3 is better than its individual components.

The results of the comparison are summarized in Table 3, with varying percentage of the training
set = {20, 50, 80, 90} and we have the following observations:

7Since we want to compare the performance of MR3 with the state of the art recommenders, so we compare it with

LOCABAL and not with our proposed eSMF in Table 3. Instead, the comparison between eSMF and MR3 is conducted in

Section 7.4.1.
8http://www.cs.toronto.edu/∼rsalakhu/.
9http://cseweb.ucsd.edu/∼jmcauley/.
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—Exploiting social relations and reviews beyond ratings can both significantly improve rec-
ommender performance in terms of RMSE on the two datasets. For example, HFT and LO-
CABAL obtain 4.95% and 5.60% relative improvement compared with PMF on Epinions,
respectively, with 80% as the training set.

—Our proposed model MR3 always achieves the best results. Compared with HFT and LO-
CABAL, MR3 averagely gains 0.0466 and 0.0217 absolute RMSE improvement on Epinions
and 0.0392 and 0.0165 on Ciao, respectively. The main reason is that MR3 jointly models
all three types of information effectively. The contribution from each component of data
source to MR3 is discussed in the later subsection (Section 7.4.1).

7.3.2 Comparing the Extension Model or MR3++ with Different Recommender Systems. We then
compare the extension of the proposed model MR3++ introduced in Section 5.2 (see Equation (13))
to show the benefit of incorporating implicit feedback from ratings.

PMF. This method is investigated in the above subsection (Section 7.3.1) and we list it here
to see the impact of implicit feedback from ratings by comparing it with the following SVD++
method.

SVD++. This method exploits implicit feedback from ratings besides performing MF on rating
matrix as shown in Equation (12) (Koren 2008). We can know the impact of implicit feedback from
ratings by comparing it with the PMF method.

MR3. This method is investigated in the above subsection (Section 7.3.1) and we list it here to
see the performance of its extension more clearly. It does not mine the data source more deeply,
i.e., without incorporating implicit feedback from ratings.

MR3++. This method extends the proposed model MR3 by incorporating implicit feedback from
ratings.

We adopt the source code of SVD++ provided in the LibRec.net Java RS Library. For the hyperpa-
rameter λrev that controls the contribution from item reviews and λrel that controls the contribution
from social relations, they are determined by grid search. For MR3++, λrel = 0.001 and λrev = 0.005.
More details about the sensitivity to meta parameters of MR3++ will be discussed later.

The results10 of the comparison are summarized in Table 4 and we have the following
observations:

—Integrating three data sources and exploiting implicit feedback can both improve the accu-
racy of rating prediction in terms of RMSE on two datasets. For example, SVD++ and MR3
obtain 7.94% and 8.02% relative improvement compared with PMF on Epinions with 80% as
the training set, respectively.

—The extension model MR3++ almost achieves the slightly better results. Compared with
SVD++ and MR3, MR3++ averagely gains 5.94% and 0.31% relative RMSE improvement on
Ciao. The main reason is that MR3++ can jointly models all three types of information and
meanwhile can mine the rating source deeply. The contributions from the two components
of MR3++ is discussed in the following subsection.

7.4 Contribution of Data Sources and Impact of Implicit Feedback

In this section, we first measure the contribution from item reviews and social relations in the pro-
posed model MR3, and then measure the impact of implicit feedback from ratings in the extension
MR3++ model.

10The standard deviations are all less than 10−5. Although, the results in Table 3 and Table 4 can be merged, we split the

whole results into the present two tables to show the contributions of auxiliary sources (i.e., the MR3 model) and the impact

of implicit feedback (i.e., the MR3++ model) more clearly.
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Table 4. RMSE Comparisons of the Extended Model MR3++ with
Different Methods (F = 10)

Datasets Training (%)

Methods

PMF SVD++ MR3 MR3++

Epinions

20 1.2001 1.1159 1.1051 1.1026

50 1.1604 1.0816 1.0809 1.0785

80 1.1502 1.0655 1.0648 1.0641

90 1.1484 1.0601* 1.0634 1.0618

Ciao

20 1.0877 1.0555 1.0142 1.0132

50 1.0536 1.0276 0.9740 0.9711

80 1.0418 1.0139 0.9521 0.9464

90 1.0391 1.0055 0.9451 0.9425

The columns of PMF and MR3 are copied from Table 3 to show the contributions

of auxiliary sources and the impact of implicit feedback more clearly. Refer to

Section 7.4.4 for the explanation of the star entry.

Fig. 6. Predictive performance of MR3 compared with its three components. Left: Epinions; Right: Ciao. The
figures are copied from Hu et al. (2015).

7.4.1 Contribution of Data Sources from Reviews and Social Relations. We have shown the ef-
fectiveness of integrating ratings with social relations and reviews in our proposed model MR3.
We now investigate the contribution of each data source to the proposed model by eliminating the
contribution of social relations and reviews from MR3 respectively:

MR3\content: Eliminating the impact of reviews by setting λrev = 0 in Equation (9), which is
equivalent to eSMF as shown in Equation (11).

MR3\social: Eliminating the impact of social relations by setting λrel = 0 in Equation (9), which
is equivalent to HFT as shown in Equation (8).

MR3\content\social: Eliminating the impact of both reviews and social relations by setting λrev =

0 and λrel = 0 in Equation (9), which is equivalent to PMF as shown in Equation (1).
The predictive results of MR3 and its three components on Epinions dataset are shown in

Figure 6. The performance degrades when either social relations or reviews are eliminated. In
detail, MR3\content, MR3\social, and MR3\content\social averagely reduce 1.19%, 4.29%, and 7.99%
relative RMSE performance on Epinions, respectively, suggesting that both reviews and social
relations contain essential information for recommender.
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7.4.2 Further Analysis of Contribution from Auxiliary Sources. We have shown that MR3\
content\social degrades 7.99% performance of total relative RMSE; and intuitively we want to know
how the additional sources of information help MR3 improve recommendation. We address this is-
sue from the richness perspective of social relations and reviews via contrastive analysis. In detail,
we first collect the (user , item) pairs such that the PMF method gets worst prediction, while the
MR3 method gets the best; we set the difference threshold between PMF and MR3 to 1. For example,

given that the prediction error of PMF on (u, i ) is e1 = |R̂P M F
u,i − Ru,i | and MR3 is e2 = |R̂MR3

u,i − Ru,i |,
if (e1 − e2) >= 1 then we reserve this pair. We then calculate the average social relations among
these users and the average review words among these items to measure the quality and richness
of the additional information.

With 80% training on the Epinions dataset, we collect total 4,382 such pairs where the number
of users is 3,627 and the number of items is 2,875; they represent 2.80%, 7.33%, and 3.88% on total
ratings, total users, and total items, respectively. The average social relations among these users are
14.18 and the average review words among these items are 1129.23. Note that these two measures
are much larger than the corresponding total average values which are 8.78 and 30.3, respectively
(see Table 2). These results intuitively confirm the significant contributions from additional data
sources to some extent.

7.4.3 Impact of Implicit Feedback from Ratings. We have investigated the contribution of each
data source to the proposed model by eliminating the impact of social relations and reviews from
MR3, respectively, showing that extra data sources (item reviews and social relations) are both use-
ful for improving the recommendation performance in terms of RMSE metric. We now investigate
the impact of implicit feedback from ratings in the extension model MR3++. The MR3++ model
contains two kinds of components: one is to integrate three data sources (ratings, social relations
and item reviews) and the other is to mine a single data source deeply (incorporating implicit feed-
back from ratings). In detail, we investigate the performance of MR3++ by eliminating the impact
of data sources and implicit feedback from it in turn:

MR3++\sources: Eliminating the impact of more data sources (i.e., remove social relations and
item reviews) by setting λrev = 0 and λrel = 0 in Equation (13), which is equivalent to the SVD++
model as shown in Equation (12).

MR3++\implicit: Eliminating the impact of implicit feedback from ratings by setting Yj = 0 in
Equation (13), which is equivalent to the MR3 model as shown in Equation (9).

MR3++\sources\implicit: Eliminating the impact of both more data sources and implicit feed-
back by setting λrev = 0, λrel = 0 andYj = 0 in Equation (13), which is equivalent to the PMF model
as shown in Equation (1).

The predictive results of MR3++ and its two components on Epinions and Ciao datasets are
shown in Figure 7. The histograms show that the performance degrades somewhat when implicit
feedback are eliminated on both datasets. For example, MR3++\implicit reduces 0.23% and 0.60%
relative RMSE performance on Epinions and Ciao datasets with 20% and 80% as the training set,
respectively.

7.4.4 Integrating More Data Sources vs. Mining Limited Data Deeply. Revisit Table 4 and
Figure 7; we can see clearly that integrating more data sources can improve a bigger margin
than only mining a single data source deeply in some cases (here, on the Ciao dataset, in terms
of average relative RMSE, the margin greater than 5.61%), but not always (here, on the Epinions
dataset, in terms of average relative RMSE, the margin less than 0.23%; and when the training
percent is 90, i.e., the star entry in Table 4, mining the rating source deeply even outperforms
integrating social relation and review data sources).
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Fig. 7. Predictive performance of MR3++ compared with its two components. Left: Epinions. Right: Ciao.
The figures are copied from Hu et al. (2015).

Consider the quality of social relations and reviews. As we mentioned previously in Section 7.1.1
(see Table 2), the number of average words per item on Ciao is 42 times longer than that on Epin-
ions, and the social density on Ciao is 12 times denser than that on Epinions. So Ciao contains
richer and higher quality information in social relations and reviews. Intuitively and empirically,
more data sources may improve performance better than mining single data source deeply when
extra data sources contain richer information.

The results on the Epinions dataset in Figure 7 are worth further thinking. The removing of
either implicit feedback component or auxiliary sources component has little effect on the rating
prediction performance, but the removing of both components has big impact. This observation
is different from the results in Figure 6 and even from the results on the Ciao dataset in Figure 7.
One possible explanation for these findings is that the contributions from the two component are
not linear-additive. Different datasets show diverse effect between implicit feedback and auxiliary
sources.

7.5 Sensitivity to Meta Parameters: F , λrel, and λrev

We analyze the sensitivity of the proposed model and its extension model to the three important
hyperparameters: one controls the contribution from social relations, one controls the contribution
from item reviews, and another determines the dimensionality of latent representations.

7.5.1 Sensitivity Analysis of the Proposed Model or MR3. The model MR3 has three important
parameters: (1) the number of latent factors F ; (2) the hyperparameter λrev that controls the con-
tribution from reviews; and (3) the hyperparameter λrel that controls the contribution from social
relations. We investigate the sensitivity of MR3 to these parameters by varying one of them while
fixing the other two.

First, we fix F = 10 and study how the reviews associated hyperparameter λrev and the so-
cial relations associated one λrel affect the whole performance of MR3. As shown in Figure 8, we
have some observations: (1) the prediction performance degrades when either λrel = 0 or λrev = 0;
(RMSE is 1.1502 when both are zero.) (2) MR3 is relatively stable and not sensitive to λrel and λrev

when they are small (e.g., from 0.0001 to 0.1), so we choose the reasonable values 0.001 and 0.05
for them, respectively.

Next, we fix λrel = 0.001 and λrev = 0.05, and vary the number of latent factors F =
{5, 10, 15, 20, 30, 50, 70, 100} with 20%, 50%, 80% as the training set, respectively. As shown in Fig-
ure 9, MR3 is relatively stable and not sensitive to F , so we choose the reasonable value 10 as default.

7.5.2 Sensitivity Analysis of the Extension Model or MR3++. We repeat the above process to
investigate the sensitivity of MR3++ to these three meta parameters.
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Fig. 8. Predictive performance of MR3 by varying λrel and λrev. Both vary in {0, 0.001, 0.005, 0.01, 0.05, 0.1}.
RMSE is 1.1502 when both are zero. Fixing F = 10. Percent of training set = 80. Dataset: Epinions. The figure
is copied from Hu et al. (2015).

Fig. 9. Predictive performance of MR3 by varying the number of latent factors F . Fixing λrel = 0.001 and
λrev = 0.05. Left: Epinions; Right: Ciao. The figures are copied from Hu et al. (2015).

Fig. 10. Predictive performance of MR3++ by varying hyperparameters. Left: varying λrel and λrev by fixing
F = 10; RMSE is 1.0139 when both are zero; Percent of Training is 80%. Right: varying F by fixing λrel = 0.001

and λrev = 0.005. Dataset: Ciao.

First, we fix F = 10 and study how the reviews associated parameter λrev and the social relations
associated one λrel affect the whole performance of MR3++. As shown in Figure 10 (on the right), we
have some observations: (1) the prediction performance degrades when either λrel = 0 or λrev = 0;
(RMSE is 1.0139 when both are zero.) (2) MR3++ is relatively stable and not sensitive to λrel and
λrev when they are small (e.g., from 0.0001 to 0.01), so we choose the reasonable values 0.001 and
0.005 for them respectively. Note that the length of RMSE range interval is within 0.002.
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Table 5. Recall Comparisons of Model MR3/MR3++ with Different Methods

Datasets Ratings

Methods

HFT (%) LOCABAL (%) MR3 (%) MR3++ (%)

Epinions
5 74.7127 73.9329 74.6411 74.6455

1 59.8015 59.2960 60.1507 60.1232

Ciao
5 73.4361 73.9042 73.8051 74.0804

1 52.3657 53.1330 53.1330 53.6445

Next, we fix λrel = 0.001 and λrev = 0.005, and vary the number of latent factors F =
{5, 10, 15, 20, 30, 50} with 20%, 50%, 80% as the training set, respectively. As shown in Figure 10 (on
the left), MR3++ is relatively stable and not sensitive to F , so we choose the reasonable value 10
as default.

7.6 Comparing Different Methods with Recall Metric

In this article, we choose RMSE as the main metric for evaluation because we focus on the rating
prediction. However, recall is a more practical metric for real top-N RS. Recall cares more about
the positive preferences.

Inspired by top-N recommendations (Kabbur et al. 2013), we define the set of all 5 ratings of a
specific user u as positive instances, denoted asGu for the ground truth and |Gu | is the number of
his exact 5 ratings. For each user, we select top variant Ku = |Gu | predicted ratings, denoted asG ′u
for evaluation. Thus, the recall, or average hit rate metric is defined as

recall =

∑
u |Gu ∩G ′u |∑

u |Gu |
. (24)

Hit rate demonstrates the performance of recalling the test items in size |Gu | recommendations list
of user u. Inversely, if we take the ratings of 1 as negative instances, we can see the performance
of predicting dislikes of users.

The results of the comparison using recall metric is summarized in Table 5. The setting of meta
parameters is the same with Section 7.3.1 and Section 7.3.2. MR3++ achieves a little improvement
over HFT and LOCABAL on two datasets, hitting on either rating 5 or rating 1. Overall, MR3 and
MR3++ models got the competitive results. We think it is reasonable that our proposed methods did
not achieve the significant improvement with the recall metric. HFT, LOCABAL, and our methods
focus on getting closer predicted ratings, rather than the best ranking of items. In other words,
we define the problem as a prediction regression task, leading us naturally to the standard RMSE
metric. The recall metric cares more about the exact match of top-N recommendations where the
models are investigated to pick out favorite things of users. These models always put more weight
on higher ratings in training set, aiming at recalling the top preferred items. MR3 and MR3++,
including HFT, are not designed for this. The emphasis is closer and precise predictions all over
1–5 ratings instead.

7.7 Running Time Analysis

Practically, the running time of models is a great concern in real-world RS. We conduct several
rounds of experiments with the same settings, that is, the number of latent factors F = 10, training
percent = 80% and testing the remaining 20%. We set learning rate = 0.0001 for all models and
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Table 6. Empirical Running Time (seconds) Comparison of the Proposed
MR3/MR3++ with Different Methods

Datasets Steps

Methods

HFT LOCABAL MR3 MR3++

Epinions

Average Epoch 1.4168 1.1251 1.549368 18.714360

Total (best valid) 77.8941 1746.1273 212.9282 2298.6840

Predicting 0.2483 0.2500 0. 274319 2.117205

Ciao

Average Epoch 0.3490 0.2656 0.416025 1.622635

Total (best valid) 431.0403 152.2076 601.7270 913.3129

Predicting 0.0469 0.0531 0.062847 0.098469

We measure the time cost on a PC machine with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz, 8G

RAM, GCC 5.3.0 installed. Time cost of SVD++ is not listed for we adopt the source code from

LibRec.net Java Recommender System Library, and the implementation is quite different from HFT,

LOCABAL, MR3 and MR3++.

nEpoch = 5 in Algorithm 1, meaning we sample and update zd,n every 5 epoches of updating
Θ,Φ,κ, which is not required in LOCABAL model.

We compare the training time and the predicting time, respectively, as shown in Table 6. We
would like to explain the comparing results as follows:

—As for the time of one training epoch, MR3 is close to HFT and LOCABAL, while MR3 com-
bines more sources of information. MR3++ will include many large-scale implicit feedbacks,
so it takes much longer to train through one epoch, especially on the dataset of Epinions
which has more users and complicated social networks. We also compare the total time
cost for training with different methods. We adopt the early stop on the best valid result to
avoid overfitting and we count that time as total. The total time cost of MR3++ is about ten
times of that of MR3, because of the around ten times cost for each epoch. The total time of
LOCABAL is extremely long as it converges after many more iterations than other methods
especially on the larger Epinions dataset.

—As for the predicting time, it is almost the same comparing MR3 with HFT and LOCABAL.
MR3++ costs a little more for predicting because of the extra implicit feedbacks included.

In a word, from Table 6, we can conclude that the empirical running time of our proposed models
is acceptable compared to other methods.

Figure 11 demonstrates the training process by iterations and RMSE on the valid set. In most
cases, these methods become convergent within about 150 rounds of iterations while the valid
RMSE of LOCABAL method can still decrease after that. More specifically, about 500 iterations are
required on Ciao and even more on Epinions with the conservatively small learning rate. From
Figure 11(a) and 11(c), MR3 and MR3++ only take few more iterations until convergence yet yield
better performance. Interestingly, by Figure 11(b) and 11(d), MR3++ continues to converge on a
lower valid RMSE value than MR3, for MR3++ takes many implicit feedbacks into account.

8 CONCLUSIONS AND FUTURE WORK

Heterogenous recommendation information sources beyond explicit ratings including social
relations and item reviews present both opportunities and challenges for conventional RSs. We
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Fig. 11. Training process of all mentioned methods by iterations. Figure (a) and (b) on dataset Epinions, (c)
and (d) on dataset Ciao. (a) and (c) compare HFT, LOCABAL and MR3 on two datasets while (b) and (d)
compare MR3 with MR3++, respectively.

investigated how to fuse these three kinds of information tightly and effectively for recommenda-
tion by aligning the topic and social latent factors. Furthermore, we mine the limited data source
more deeply by incorporating implicit feedback from ratings.

We first proposed a novel model MR3 which jointly models ratings, social relations, and item
reviews by aligning latent factors and hidden topics to perform social MF and topic MF simultane-
ously for effective rating prediction. Moreover, an extended Social MF method eSMF was obtained
by capturing the graph structure of neighbors via trust values to exploit the ratings and social
relations more tightly. We then enhanced the proposed model by incorporating implicit feedback
from ratings, resulting in the extension model MR3++, to demonstrate its capability and flexibility.
The core idea of mining ratings deeply is to learn an extra implicit feature matrix to consider the
influence of rated items.

Empirical results on two real-world datasets demonstrated that our proposed models lead to
improved predictive performance compared with various different kinds of recommendation ap-
proaches. Furthermore, we designed experiments to understand the contribution of each data
source and the impact of the implicit feedback from ratings; we also compare the contribution
of integrating more data sources with the impact of mining the limited data source deeply from
the perspective of the richness of auxiliary information. We finally analyzed the sensitive analysis
of our models to the three meta parameters.

We focused on the rating prediction task in this article and hence we evaluated the performance
of RSs under the metric RMSE. However, more metrics should be explored in the future work
(McNee et al. 2006).
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