

Personalized Neural Embeddings for Collaborative Filtering with Text

Guangneng Hu

Tuesday, 4 June 2019 NAACL-19, Minneapolis

Outline

- Collaborative filtering
 - Matrix factorization & Neural approaches
- Collaborative filtering with text
 - Topic modelling & Word embeddings
- Personalized neural embeddings
- Conclusion

Recommendations: Products, Media, Entertainment, & Partners

• Amazon

- 300 million customers
- 564 million products
- Netflix
 - 480,189 users
 - 17,770 movies
- Spotify
 - 40 million songs
- OkCupid
 - 10 million members

A Typical CF Approach: Matrix Factorization (MF) (Koren KDD'08, KDD 2018 TEST OF TIME)

A Limitation of MF: As a Single-Layer Linear Neural Network

- <u>Input</u>: one-hot encodings of the user and item indices (*u*, *i*)
- Embedding: embedding matrices (P, Q)
- <u>Output</u>: Hadamard product between embeddings with a fixed all-one weight vector h and an identity activation

CF Faces Challenges: Data Sparsity, Long Tail & Unbalanced

- Data sparsity issue
 - Netflix
 - 1.225%
 - Amazon
 - 0.017%
- Long tail & Unbalanced
 - Pareto principle (80/20 rule):
 - A small proportion (e.g., 20%) of products generate a large proportion (e.g., 80%) of sales

A Solution: Collaborative filtering with text

- Item reviews justify user ratings
- Item content reveals topic semantics

Topic Modelling: Hidden Factors & Topics (HFT)

• Using a transform that aligns latent item factors and item topics

McAuley & Leskovec, Hidden factors and hidden topics, RecSys'13

Pre-extracted Word-embedding as Features (TBPR)

- Basic MF factorizes ratings into user/item latent factors
- Another MF factorizes reviews into user/item text factors

9

Personalized Neural Embeddings (PNE)

- Inspired by neural CF and entity embeddings
 - PNE jointly learns embeddings of users, items, and words
- PNE estimates the probability that a user will like an item by two terms
 - *behavior* factors and *semantic* factors

Behavior Factors: Learning Neural Embeddings of Users & Items

Input

Item

- Learning weights *h* instead of fixing it
- Using non-linear activation instead of identity

11

User

Semantic Factors: Learning Personalized Word Embeddings <u>Semantic factors</u>

 Personalized word embedding encodes the importance of a word to the given user-item interaction

$$a_j^{u,i} = oldsymbol{x}_{ui}^T oldsymbol{m}_j^{u,i}$$

$$\boldsymbol{z}_{ui}^{\text{semantic}} = \sum_{j: w_j \in d_{ui}} \text{Softmax}(a_j^{u,i}) \boldsymbol{c}_j$$

Jointly Learning Embeddings of Users, Items, & Words

- Sharing user and item embeddings
- Binary crossentropy loss

13

Dataset and Baselines

• Datasets

- Amazon: Product reviews by users
- Cheetah Mobile: News reading by users

Dataset	#user	#item	#rating	#word	#density	avg. words
Amazon	8,514	28,262	56,050	1,845,387	0.023%	65.3
Cheetah	15,890	84,802	477,685	612,839	0.035%	7.2

• Baselines

Baselines	Shallow method	Deep method
CF	BPR	MLP
CF w/ text	HFT, TBPR	LCMR, PNE (ours)

Evaluation Metrics

- Top-N item recommendation
- Metrics to measure the accuracy of rankings
 - Hit Ratio (HR)
 - Mean Reciprocal Rank (MRR)
 - Normalized Discounted Cumulative Gain (NDCG)

$$HR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \delta(p_u \le topN),$$

$$MRR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{p_u}$$

$$NDCG = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{\log 2}{\log(p_u + 1)},$$

Comparing Different Approaches: PNE vs Multilayer Perceptron

• Since CFNet of PNE is a neural CF (with one hidden layer), results show the benefit of exploiting unstructured text to alleviate the data sparsity issue faced by pure CF methods

ТорК	Metric	Method						
		BPR	HFT	TBPR	MLP	LCMR	PNE	
5	HR	8.10	10.77	15.17	21.00*	20.24	23.52	
	NDCG	5.83	8.15	12.08	14.86*	14.51	16.46	
	MRR	5.09	7.29	11.04	12.83*	12.63	14.13	
10	HR	12.04	13.60	17.77	28.36*	28.36*	31.86	
	NDCG	7.10	9.07	12.91	16.97*	16.78	19.15	
	MRR	5.61	7.67	11.38	13.71*	13.56	15.24	
20	HR	18.21	27.82	22.68	38.20	39.51*	42.21	
	NDCG	8.64	12.52	14.14	18.99	19.18*	21.75	
	MRR	6.02	8.54	11.71	14.26*	14.20	15.95	

Comparing Different Approaches: PNE vs HFT & TBPR

• Results show the benefit of integrating content text through MemNet (and also exploiting interactions through neural CF)

ТорК	Metric	Method						
		BPR	HFT	TBPR	MLP	LCMR	PNE	
5	HR	8.10	10.77	15.17	21.00*	20.24	23.52	
	NDCG	5.83	8.15	12.08	14.86*	14.51	16.46	
	MRR	5.09	7.29	11.04	12.83*	12.63	14.13	
10	HR	12.04	13.60	17.77	28.36*	28.36*	31.86	
	NDCG	7.10	9.07	12.91	16.97*	16.78	19.15	
	MRR	5.61	7.67	11.38	13.71*	13.56	15.24	
20	HR	18.21	27.82	22.68	38.20	39.51*	42.21	
	NDCG	8.64	12.52	14.14	18.99	19.18*	21.75	
	MRR	6.02	8.54	11.71	14.26*	14.20	15.95	

Comparing Different Approaches: PNE vs LCMR

- Since MemNet of PNE is the same with Local MemNet of LCMR (with one-hop), results show the design of CFNet of PNE is more reasonable than that of **C**entralized MemNet of LCMR
- This also points out the challenge of effectively fusing ratings & text

ТорК	Metric	Method						
		BPR	HFT	TBPR	MLP	LCMR	PNE	
5	HR	8.10	10.77	15.17	21.00*	20.24	23.52	
	NDCG	5.83	8.15	12.08	14.86*	14.51	16.46	
	MRR	5.09	7.29	11.04	12.83*	12.63	14.13	
10	HR	12.04	13.60	17.77	28.36*	28.36*	31.86	
	NDCG	7.10	9.07	12.91	16.97*	16.78	19.15	
	MRR	5.61	7.67	11.38	13.71*	13.56	15.24	
20	HR	18.21	27.82	22.68	38.20	39.51*	42.21	
	NDCG	8.64	12.52	14.14	18.99	19.18*	21.75	
	MRR	6.02	8.54	11.71	14.26*	14.20	15.95	

PNE Learns Meaningful Word Embeddings

- Nearest neighbors of <u>drug</u>: shot, shoots, gang, murder, killing, rape, stabbed, truck, school, police, teenage
- Google word2vec: drugs, heroin, addiction, abuse, fda, alcoholism, cocaine, lsd, alcohol, schedule, substances

Conclusion and Future Works

- Conclusion
 - Behavior interactions can be effectively integrated with unstructured text via jointly learning neural embeddings of users, items, and words
- Future works
 - User privacy
 - A user does not want to share the raw data with others
 - General data privacy regulatory (GDPR) and Federated learning

Thanks!

Q & A

Acknowledge: NAACL travel grant