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Outline

= Part |. Synthetic Recommendation: Combining Ratings, Social
Relations, and Reviews
o Based on the published work of IJCAI-15, i.e., the MR3 model

= Part ll. An Extension: Incorporating Implicit Feedback from
Ratings
o Based on the submitted work of TKDE-16, i.e., the MR3++ model

= Part lll. Future Work
o Anidea: Further analysis from the cold-start perspective



Part |

Synthetic Recommendation (or the MR3 model):
Combining Ratings, Social Relations, and Reviews
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Typical Model: Probabilistic Matrix
Factorization (PMF)

* Low dimensional representations of users and of items

Learning

CTye-Frediction

IxJ
I: #Users, J: #ltems F: dimensionality of latent factors

Salakhutdinov & Mnih, Probabilistic matrix factorization, NIPS 2008



Issues of PMF

* Sparse rating matrix, e.g., ¢ Cold-start users & items

* Epinions: 0.022% * Have no or few ratings
* Ciao: 0.11%

Statistics Epinions Ciao

# of Users 49.454 7,340

# of Items 74,154 22,472

# of Ratings/Reviews 790,940 183,974
# of Social Relations 434,680 112,942

# of Words 2,246,837 28,874,000
Rating Density 0.00022 0.0011
Social Density 0.00018 0.0021

Ave. Words Per Item 30.3 1284.9




One Research Line to Address the Issues

* Topic MF: Integrating item reviews into ratings
* [tem reviews justify the ratings
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One Research Line (cont’)

* Typical model: Hidden factors and hidden topics (HFT)

item item topic
parameters distribution
Learning item Learning item
parameters by transform topic distribution
factorizing ) exp(win) by topic
rating matrix YRS exp(Rig) ‘ ‘ L modeling
| |
v € RE 0; € AN (ie, > 0, =1)
k

McAuley & Leskovec, Hidden factors and hidden topics, RecSys 2013



* Social MF: Integrating social relations into ratings
* The rating behavior of users is influenced by their friends
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Another Research Line (cont’)

* Typical model: Local and global recommender (LOCABAL)

min E W (Rij _ uiT vV ) 2 Exploiting ratings t.)y learning
U, V.H latent representations of

users and of items

n
T 2
+ & Z Z (Sik — Uy Huk) Exploiting local social

i=1 ur eN; context by learning latent

social representations
+ AU + [ VIE + [H]%),
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Tang et al., Exploiting local and global social context for recommendation, 1JCAI 2013
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Issues of Topic MF and Social MF

* [tem reviews and social relations are both useful
 Demonstrated by HFT and LOCABAL, respectively

* One research line can benefit from another
* Topic MF, e.g., HFT: ignores the social relations
* Social MF, e.g., LOCABAL: ignores the item reviews
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* |ltem reviews and
social relations
are both useful
for improving
rating prediction

* So, put all of
them altogether
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Rating

Our Proposed Model: Combining
Ratings, Reviews and Social Relations
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Challenge: Jointly Modelling Three
Kinds of Data Sources

* Key idea: connecting relations and reviews through ratings

* For rating source, learning
latent representations of = >

users and of items H U V|4 0

e For social relation source,
learning latent social
representations of users and
their social relation matrix

* For item reviews, Iearning HeRIXFUcREX YV cREX pe AFX g€ AFXL
topic distributions (and word
distributions)
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Model Learning

* Alternating two steps

* Topic assignments zd,n for each word in reviews corpus are fixed;
then we update the terms O, ®, and k by gradient descent

* Parameters associated with reviews corpus 6 and ¢ are fixed; then
sample zd,n by iterating through all docs and each word within

update "W PV W — aromin £(O, O, k, 2°9);
0,9,k
(1

with probability p(ZﬂeW _ f) _ gbnew

d,’n f;wd,n.

new
d,n

sample z
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* Alternating two steps
e Topic assignments zd,n for

each word in reviews corpus

are fixed; then we update
the terms O, ®, and « by
gradient descent

* Parameters associated with
reviews corpus 6 and ¢ are
fixed; then sample zd,n by
iterating through all docs
and each word within
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Datasets

* Epinions and Ciao
* http://www.public.asu.edu/~jtang20/

Statistics Epinions Ciao
# of Users 49. 454 7,340
# of Items 74,154 22,472

# of Ratings/Reviews 790,940 183,974
# of Social Relations 434,680 112,942

# of Words 2,246,837 28,874,000
Rating Density 0.00022 0.0011
Social Density 0.00018 0.0021

Ave. Words Per Item 30.3 1284 .9
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Metric and Code

* RMSE (root-mean-square error)
* The lower, the better

RMSET = \/Z(u, oy i~ 13’@',3-)2/|T\

* PMF
* http://www.cs.toronto.edu/~rsalakhu/BPMF.html

s HFT
e http://cseweb.ucsd.edu/~jmcauley/
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Comparing Different Recommender Systems

 MR3 vs. PMF, HFT, and LOCABAL (F = 10)

Datasets  Trainine Methods Improvement of MR3 vs.
& "Mean PMF  HFT LOCABAL [ MR3 || PMF  HFT LOCABAL
20% 12265 1.2001 1.1857 [.1222 [.1051|] 8.60% 7.29% [.55%
Bl S0% 12239 11604 1.1323 1.1055 1.0809 || 7.35% 4.76% 2.28%
PIIONS ¢, 12225  1.1502  1.0960 1.0892 1.0648 || 8.02% 2.93% 2.29%
00% 12187 1.1484 1.0867 1.0840 1.0634 || 7.99% 2.19% 1.94%
20%  1.1095 1.0877 1.0439 [.0287 10142 7.25% 2.93% [.43%
Ciac 50%  1.0964 1.0536 1.0379 09930 109740 8.17% 6.56% 1.95%
80%  1.0899 1.0418 0.9958 0.9709 109521 9.42% 4.59% 1.97%
00%  1.0841 1.0391 009644  0.9587 0.9451 || 9.95% 2.04% 1.44%
Average 8.34% 4.16% 1.86%
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Impact of Reviews and Social Relations
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comparead wi ITS ree components =
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Sensitivity to Meta-Parameters

e Arel: controls the
contribution from
social relations

1.095

1.09r

1.085

¢
1.08

e Arev: controls the
contribution from
reviews .

e Default: 0.001, 0.05 .|

RMSE

1.065

0 0.001 0.005 0.01 0.05 0.1
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Sensitivity to Meta-Parameters (cont’)

e F: the number of latent factors; Default: 10
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Part |l

An Extension (or the MR3++ model):
Incorporating Implicit Feedback from Ratings

24



Users choose to indicate
their preferences implicitly
by voting a rating. In
another way, users who
have rated the similar
items are more likely to
have similar preferences
than those who have not,
In an a priori sense.

RMSE
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0.905

09

0.895

0.89

0.885

0.88

0.875
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s With biases

== With implicit feedback
With temporal dynamics (v.1) |

=== \\ith temporal dynamics (v.2)

100 1,000 10,000 100,000

Millions of parameters
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Typical Model and Our Extension

= The SVD++ model

A T
i o (S, )0

= Our Extension (the MR3++ model)

o Replace the rating component of MR3
by the above model

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. KDD 2008
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Part Il

An idea:
Further analysis from the cold-start perspective
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How Helpful of Auxiliary Data Sources?

We get performance improvement on the whole (e.g., RMSE)
when we combine more data sources.

But ...

o What's the influence of auxiliary data sources on the cold-start
users/items?

o From the cold-start perspective, what’s the relative benefits between
Integrating more data sources and exploiting the ratings more deep?
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Conclusions

* A framework: exploiting ratings, social relations, and reviews
simultaneously for recommendation

* An extension: incorporating implicit feedback from ratings

* An idea: further analysis from the cold-start perspective
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