

Synthetic Recommendation and Its Extension

<u>Guang-Neng Hu</u>, Xin-Yu Dai, Yunya Song (HKBU), Shu-Jian Huang, Jia-Jun Chen

- Part I. Synthetic Recommendation: Combining Ratings, Social Relations, and Reviews
 - Based on the published work of IJCAI-15, i.e., the MR3 model
- Part II. An Extension: Incorporating Implicit Feedback from Ratings
 - Based on the submitted work of TKDE-16, i.e., the MR3++ model
- Part III. Future Work
 - An idea: Further analysis from the cold-start perspective

Part I

Synthetic Recommendation (or the MR3 model): Combining Ratings, Social Relations, and Reviews

RSs are Ubiquitous

- Books at Amazon
- Movies at Netflix
- People at OkCupid
- News at Google

- *Rec*: Users x Items
 → Ratings
- Predict unknown ratings from observed data

Typical Model: Probabilistic Matrix Factorization (PMF)

Low dimensional representations of users and of items

Salakhutdinov & Mnih, Probabilistic matrix factorization, NIPS 2008

Issues of PMF

- Sparse rating matrix, e.g.,
 - Epinions: 0.022%

- Cold-start users & items
 - Have no or few ratings

• Ciao: 0.11%

Statistics	Epinions	Ciao
# of Users	49,454	7,340
# of Items	74,154	22,472
# of Ratings/Reviews	790,940	183,974
# of Social Relations	434,680	112,942
# of Words	2,246,837	28,874,000
Rating Density	0.00022	0.0011
Social Density	0.00018	0.0021
Ave. Words Per Item	30.3	1284.9

One Research Line to Address the Issues

- Topic MF: Integrating item reviews into ratings
 - Item reviews justify the ratings

• <u>OliviuNea</u>	Rating	IPhone 6 16GB - A jump into the best Smartphone availabe place. 39 17.11.2014
Ci	i ao /	I am a tech freak, I have owned every iPhone this, but I amazon.com ® rarely kee or sell the
Add to my Circle o Subscribe to review	<u>f Trust</u> ws	I bought about 3 weeks ago. I used to have the everything about it, it was small and beautiful had the opportunity to exchange it for an iPho
About me: Exams next, sorry for my a	s coming up absence.	photos and videos I disliked the design of the
Member since: Reviews:	12.10.2014 30	walking, always in need for 2 hands was one

One Research Line (cont')

• Typical model: Hidden factors and hidden topics (HFT)

McAuley & Leskovec, Hidden factors and hidden topics, RecSys 2013

• The rating behavior of users is influenced by their friends

• Typical model: Local and global recommender (LOCABAL)

$$\min_{\mathbf{U},\mathbf{V},\mathbf{H}} \sum_{\langle u_i,v_j\rangle\in\mathcal{O}} w_i (\mathbf{R}_{ij} - \mathbf{u}_i^{\top}\mathbf{v}_j)^2 \xrightarrow{\text{Exploiting ratings by learning latent representations of users and of items} \\ + \alpha \sum_{i=1}^n \sum_{u_k\in\mathcal{N}_i} (\mathbf{S}_{ik} - \mathbf{u}_i^{\top}\mathbf{H}\mathbf{u}_k)^2 \xrightarrow{\text{Exploiting local social context by learning latent}} \\ + \lambda (\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 + \|\mathbf{H}\|_F^2), \xrightarrow{\text{social representations}}$$

Tang et al., Exploiting local and global social context for recommendation, IJCAI 2013

- Item reviews and social relations are both useful
 - Demonstrated by HFT and LOCABAL, respectively
- One research line can benefit from another
 - Topic MF, e.g., HFT: ignores the social relations
 - Social MF, e.g., LOCABAL: ignores the item reviews

Our Proposed Model: Combining Ratings, Reviews and Social Relations

- Item reviews and social relations are both useful for improving rating prediction
- So, put all of them altogether

⁶⁶ iPhone 6 16GB - A jump into the best Smartphone availabe place. **99** 17.11.2014

I am a tech freak, I have owned every iPhone this, but I also owned almost every flagship A rarely keep smartphones more than 6 months or sell them and put a little extra so I can buy I bought about 3 weeks ago. I used to have th everything about it, it was small and beautiful had the opportunity to exchange it for an iPhc photos and videos I disliked the design of the bigger phone and hated how I had problems a walking, always in need for 2 hands was one to maintain, so you can understand what this

Review

Challenge: Jointly Modelling Three Kinds of Data Sources

- Key idea: connecting relations and reviews through ratings
 - For rating source, learning latent representations of users and of items
 - For social relation source, learning latent social representations of users and their social relation matrix
 - For item reviews, learning topic distributions (and word distributions)

$$\mathcal{L}(\Theta, \Phi, z, \kappa) \triangleq \sum_{\substack{R_{i,j} \neq 0}} W_{i,j} \underbrace{(R_{i,j} - \hat{R}_{i,j})}^{2}_{\text{Exploiting ratings}} \\ -\lambda_{\text{rev}} \sum_{d=1}^{J} \sum_{\substack{n \in N_d}} \underbrace{(\log \theta_{z_{d,n}} + \log \phi_{z_{d,n},w_{d,n}})}_{\text{reviews}}_{\text{reviews}} \\ +\lambda_{\text{rel}} \sum_{\substack{T_{i,k} \neq 0}} C_{i,k} \underbrace{(S_{i,k} - U_i^{\text{T}} H U_k)}^{2} + \lambda \Omega(\Theta), \\ \xrightarrow{\text{Exploiting social relations}}_{\text{Exploiting social relations}} \\ \text{here parameters } \Theta = \{U, V, H\} \text{ are associated with rat} \\ \text{d social relations, parameters } \Phi = \{\theta, \phi\} \text{ associated y} \}$$

- Alternating two steps
 - Topic assignments zd,n for each word in reviews corpus are fixed; then we update the terms Θ, Φ, and κ by gradient descent
 - Parameters associated with reviews corpus θ and ϕ are fixed; then sample $z_{d,n}$ by iterating through all docs and each word within

update
$$\Theta^{\text{new}}, \Phi^{\text{new}}, \kappa^{\text{new}} = \underset{\Theta, \Phi, \kappa}{\arg \min} \mathcal{L}(\Theta, \Phi, \kappa, z^{\text{old}});$$

 Θ, Φ, κ
(1)
sample $z_{d,n}^{\text{new}}$ with probability $p(z_{d,n}^{\text{new}} = f) = \phi_{f,w_{d,n}}^{\text{new}}.$

Gradients

- Alternating two steps
 - Topic assignments zd,n for each word in reviews corpus are fixed; then we update the terms Θ, Φ, and κ by gradient descent
 - Parameters associated with reviews corpus θ and φ are fixed; then sample zd,n by iterating through all docs and each word within

$$\frac{1}{2} \frac{\partial \mathcal{L}}{\partial U_i} = \sum_{j:R_{i,j}\neq 0} W_{i,j} (\hat{R}_{i,j} - R_{i,j}) V_j + \lambda U_i$$
$$+ \lambda_{\text{rel}} \sum_{k:T_{k,i}\neq 0} C_{i,k} (U_k^{\text{T}} H U_i - S_{i,k}) H^{\text{T}} U_k$$
$$+ \lambda_{\text{rel}} \sum_{k:T_{i,k}\neq 0} C_{k,i} (U_i^{\text{T}} H U_k - S_{i,k}) H U_k.$$
$$\frac{\partial \mathcal{L}}{\partial V_j} = 2 \sum_{i:R_{i,j}\neq 0} W_{i,j} (\hat{R}_{i,j} - R_{i,j}) U_i$$
$$- \lambda_{\text{rev}} \kappa \left(M_j - \frac{m_j}{z_j} \exp(\kappa V_j) \right) + 2\lambda V_j.$$
$$\frac{1}{2} \frac{\partial \mathcal{L}}{\partial H} = \lambda_{\text{rel}} \sum_{T_{i,k}\neq 0} C_{i,k} (U_i^{\text{T}} H U_k - S_{i,k}) U_i U_k^{\text{T}} + \lambda H.$$
$$\frac{\partial \mathcal{L}}{\partial \psi_{fw}} = -\lambda_{\text{rev}} \left(M_{fw} - \frac{m_f}{z_f} \exp(\psi_{fw}) \right).$$

 $\frac{\partial \mathcal{L}}{\partial \kappa} = -\lambda_{\text{rev}} \sum_{j,f} V_{jf} \left(M_{jf} - \frac{m_j}{z_j} \exp\left(\kappa V_{jf}\right) \right).$

Datasets

• Epinions and Ciao

<u>http://www.public.asu.edu/~jtang20/</u>

Statistics	Epinions	Ciao
# of Users	49,454	7,340
# of Items	74,154	22,472
# of Ratings/Reviews	790,940	183,974
# of Social Relations	434,680	112,942
# of Words	2,246,837	28,874,000
Rating Density	0.00022	0.0011
Social Density	0.00018	0.0021
Ave. Words Per Item	30.3	1284.9

Metric and Code

- RMSE (root-mean-square error)
 - The lower, the better

$$RMSE_{\mathcal{T}} = \sqrt{\sum_{(u_i, v_j) \in \mathcal{T}} (R_{i,j} - \hat{R}_{i,j})^2 / |\mathcal{T}|}$$

- PMF
 - <u>http://www.cs.toronto.edu/~rsalakhu/BPMF.html</u>
- HFT
 - <u>http://cseweb.ucsd.edu/~jmcauley/</u>

• MR3 vs. PMF, HFT, and LOCABAL (F = 10)

Datasets	Training -	Methods			Improvement of MR3 vs.				
		Mean	PMF	HFT	LOCABAL	MR3	PMF	HFT	LOCABAL
Epinions	20%	1.2265	1.2001	1.1857	1.1222	1.1051	8.60%	7.29%	1.55%
	50%	1.2239	1.1604	1.1323	1.1055	1.0809	7.35%	4.76%	2.28%
	80%	1.2225	1.1502	1.0960	1.0892	1.0648	8.02%	2.93%	2.29%
	90%	1.2187	1.1484	1.0867	1.0840	1.0634	7.99%	2.19%	1.94%
Ciao	20%	1.1095	1.0877	1.0439	1.0287	1.0142	7.25%	2.93%	1.43%
	50%	1.0964	1.0536	1.0379	0.9930	0.9740	8.17%	6.56%	1.95%
	80%	1.0899	1.0418	0.9958	0.9709	0.9521	9.42%	4.59%	1.97%
	90%	1.0841	1.0391	0.9644	0.9587	0.9451	9.95%	2.04%	1.44%
Average							8.34%	4.16%	1.86%

Sensitivity to Meta-Parameters

- λ*rel*: controls the contribution from social *rel*ations
- λ*rev*: controls the contribution from *rev*iews
- Default: 0.001, 0.05

Sensitivity to Meta-Parameters (cont')

• F: the number of latent factors; Default: 10

Part II

An Extension (or the MR3++ model): Incorporating Implicit Feedback from Ratings

Why Care about Implicit Feedback?

Users choose to indicate their preferences implicitly by voting a rating. In another way, users who have rated the similar items are more likely to have similar preferences than those who have not, in an a priori sense.

Typical Model and Our Extension

The SVD++ model

$$\hat{R}_{u,i}^* = P_u^{\mathrm{T}}Q_i + \left(|N_u|^{-\frac{1}{2}} \sum_{j \in N_u} Y_j \right)^{\mathrm{T}}Q_i + \mu + b_u + b_i.$$

- Our Extension (the MR3++ model)
 - Replace the rating component of MR3 by the above model

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. KDD 2008

Part III

An idea:

Further analysis from the cold-start perspective

- We get performance improvement on the whole (e.g., RMSE) when we combine more data sources.
- But ...
 - What's the influence of auxiliary data sources on the cold-start users/items?
 - From the cold-start perspective, what's the relative benefits between integrating more data sources and exploiting the ratings more deep?

• A framework: exploiting ratings, social relations, and reviews simultaneously for recommendation

- An extension: incorporating implicit feedback from ratings
- An idea: further analysis from the cold-start perspective

- Salakhutdinov & Mnih, *Probabilistic matrix factorization*, NIPS 2008
- McAuley & Leskovec, *Hidden factors and hidden topics*, RecSys 2013
- Ma et al., <u>SoRec: Social Recommendation Using Probabilistic Matrix</u> <u>Factorization</u>, CIKM 2008
- Tang et al., <u>Exploiting local and global social context for</u> <u>recommendation</u>, IJCAI 2013
- Y. Koren. *Factorization meets the neighborhood: a multifaceted collaborative filtering model*. KDD 2008
- Hu et al., <u>A Synthetic Approach for Recommendation: Combining Ratings</u>, <u>Social Relations, and Reviews</u>, IJCAI 2015

Thanks Q&A

Acknowledgement

