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Deep and Adversarial Knowledge Transfer in Recommendation

by

Guangneng Hu

Department of Computer Science and Engineering, HKUST

Hong Kong University of Science and Technology

ABSTRACT

Recommendation is a basic service to filter information and to guide users from a large pool

of items at various online systems, achieving both improved user satisfaction and increased cor-

porate revenues. It works by learning user preferences on items from their historical interactions.

Recent deep learning techniques bring in advancements of recommender models with the ability

of learning representations of users and items from the interaction data. In real-world scenarios,

however, interactions may well be sparse in a target domain of interest, and thus it hurts the huge

success of deep models which are depending on large-scale labeled data. Transfer learning is

studied to address the data sparsity by transferring the knowledge from auxiliary source domains.

There is a privacy concern when the source domain shares their data with the target domain.

This issue gets worse by the ever-increasing abuses of personal data and it is inevitable due to

the enforcement of data protection regulations. Existing research work focuses on improving the

recommendation performance while ignores the privacy leakage issue.

In this thesis, we investigate deep knowledge transfer in recommendation, of that the core idea

is to answer what to transfer between domains. Specifically, we propose three models in different

transfer learning approaches, i.e., deep model-based transfer (DMT), deep instance-based transfer

(DIT), and deep feature-based transfer (DFT). Firstly, in DMT, we transfer parameters in lower

layers and learn source and target networks in a multi-task way. The CoNet model is introduced

to learn dual knowledge transfer across domains and is capable of selecting knowledge to transfer

via the sparsity-induced regularization technique enforced on the transfer matrix. Secondly,

in DIT, we transfer certain parts of instances in the source domain by adaptively re-weighting

them to be used in the target domain. The TransNet model is introduced to learn an adaptive

transfer vector to capture relations between the target item and source items. Next, in DFT, we

xv



transfer a “good” feature representation that captures the invariant while reduces the difference

between domains. The TrNews model is introduced to transfer heterogeneous user interests

across domains and transfer item representations selectively. The proposed transfer models

can be used for modeling both relational data (e.g., clicks), content data (e.g., news), and their

combinations (hybrid data).

Finally, we investigate the adversarial knowledge transfer in recommendation to protect

the private attributes in the source domain. Specifically, we propose the PrivNet model which

improves the target performance as well as protects the source privacy, of that the core is to learn

a privacy-aware neural representation. Through extensive experiments on real-world datasets,

we validate the research on adversarial knowledge transfer. This thesis will also describe the

research frontier and point out promising future work for investigation.
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Chapter 1

Introduction

Recommender systems can satisfy user information need by providing personalized recommen-

dation services and also increase corporate revenues by actively engaging with consumers. The

core idea is to match user preferences with items properties by learning from their historical

interactions. Deep learning is capable of learning representations of users and items, and thus it

is widely used in recommendation. In real-world scenarios, however, interactions may well be

sparse in the target domain of interest, and thus the data-hungry deep models face the challenges

since they depend on large-scale labeled data. Fortunately, transfer learning has been studied to

tackle the data sparsity issue by transferring knowledge from auxiliary source domains.

When the source data is fusing into the the target domain, the privacy concerns are raised. A

malicious attacker can infer a user’s private attributes (e.g., gender, age, and occupation) from

their source ratings and recommendation results. Existing recommendation methods are mainly

focusing on improving the target performance while ignoring the privacy protection during

knowledge transfer.

In this thesis, we investigate deep knowledge transfer in recommendation, achieving both

benefits from deep learning meeting transfer learning in recommender systems. The core idea

is to answer what to transfer between domains based on the neural recommender networks.

Comparing with traditional (shallow) knowledge transfer, the deep knowledge transfer tightly

integrates the learning of knowledge transfer with the representation learning of users and items.

This novel learning paradigm enables that the recommendation task learning couples with the

knowledge transfer learning, and vice versa.

We also investigate adversarial knowledge transfer in recommendation, protecting the private

attributes in the source domain while improving the target performance, of that the core is to

learn a privacy-aware transferable representation. With thorough experiments on real-world

datasets, we validate the research on adversarial-based privacy-preserving knowledge transfer.
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Figure 1.1: Illustration of Recommender Engine (left part) and the Data Sources (right part).

1.1 Motivation

Recommendation is a basic service at various online systems and industrial applications, includ-

ing e-commerce websites of Amazon1 and Taobao2 , news feeds platforms of Google News3

and Toutiao4 . Recommender systems (RecSys) have been widely used for recommendations of

products, articles, people, and ads, bringing in high revenues for companies and improving the

customers’ experiences [1] . As shown in Figure 1.1 (left part), the recommender engine can

generate a small size of potential items to a user from millions of item corpus. RecSys achieves

this service by learning users’ preferences on items from their interactions, in the forms of user

behaviors including clicks, ratings, purchases, watches, and installations.

With the emerging of deep learning and its great success in speech recognition, computer

vision, and natural language processing [35, 109], deep learning is capable of learning represen-

tations of users and items, and thus it is widely used in recommendation [17]. Deep learning

benefits from the big data age since the deep models are data hungry and need a lot of labeled

examples, for example, the ImageNet dataset [19] and the Netflix grand prize [7] enabling the

advancements in for computer vision and recommendation, respectively. One reason is that the

number of parameters in deep models is much larger than the traditional learning algorithms

such as matrix factorization techniques and support vector machines. Deep learning needs such

large-scale data in order to learn a good representation and the overfitting is likely to occur when

1https://www.amazon.com/
2https://www.taobao.com/
3https://news.google.com/
4https://www.toutiao.com/
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Figure 1.2: An Example of Deep Learning with Small Data: Reality in the Age of Big Data. The
English domain has accumulated lots of rating data while the Chinese domain is facing the rating
data sparsity issue.

the model is very big while the training data is much small.

In some cases, however, there are no enough interaction data to learn a good recommendation

model, when new users come or items are newly released. In such scenery, RecSys is difficult to

understand users’ true preferences, i.e., suffering from the data sparsity issues. Collecting data

is sometimes highly cost and very time-consuming. It hinders the progress of RecSys research

because of the property of data hungry and the need of large labeled data. Note that, the deep

learning is not a panacea even in the big data age [78]. In real-world scenarios, as shown in

Figure 1.2, we have accumulated lots of rating data in one domain (the English domain), while

our target domain of interest (the Chinese domain) is fresh and so the rating data is sparse.

Luckily, transfer learning has been studied to reduce the need of massive labeled data in

one domain by transferring the knowledge from another domain which has sufficient training

data [93]. This learning paradigm is applicable to recommendation since the target user-item

interactions may be sparse but there are relevant data sources in auxiliary domains. These data

sources may come from the user-side (location, gender, social relations), item-side (tag, category,

description texts), and the interaction-side (another user-item interaction matrix) (see Figure 1.1,

right part).

During the past decade, transfer learning has been studied to address the data sparsity
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Figure 1.3: The Ideal Performance of Deep Knowledge Transfer: Achieving Benefits of Deep
Learning Meeting Transfer Learning.

issue in recommendation and this multidisciplinary of the transfer in recommendation has been

widely developed. The majority of existing transfer methods are built on the base of shallow

recommendation models such as matrix factorization [61, 62, 95]. However, shallow methods

are insufficient to learn complex relationships between users and items, or to extract useful

features from semantic-rich content data. We aim to propose deep knowledge transfer for

recommendation by benefiting from both deep learning with the ability of learning user and

item representations and transfer learning with the ability of improving target performance by

knowledge of source domains.

The motivation of deep knowledge transfer can be summarized in Figure 1.3. The figure

is divided into two parts. The first part is about deep learning (in red) and the second part is

about transfer learning (in blue). For the first part, the deep models surpass the shallow ones

when a reasonable size of samples are fed to them since the deep learning can automatically

extract features from the data rather than the human-involved feature engineering commonly

used in shallow learning. For the second part, the transfer models are superior than the non-

transfer ones in terms of three metrics: jump start, asymptomatic performance (abbreviated as

asymptomatic perf. in the figure), and sample to threshold. The asymptomatic performance is

the final performance of models in the target domain both with and without transfer learning.

Since the training data is always finite in real-world recommender systems, a typical proxy is

4



the performance at the convergence point of the models. The jump-start performance is the

initial performance in the target domain by comparing the transfer model with the non-transfer

ones such as recommending random or the most popular items. When the single-domain SOTA

(state-of-the-art) models are not able to work in cold-start recommendation due to the zero

training examples in the target domain, the transfer model still works since it can exploit the

knowledge from source domains. The sample-to-threshold is the number of training samples

that the transfer model can reduce by comparing with non-transfer ones at achieving the same

performance point. The more we can reduce, the better performance the transfer model is.

Deep knowledge transfer can be applied to enable knowledge transfer between many kinds of

datasets in recommendation, ranging from cross-dataset (news feed and application installations),

cross-domain (e-commerce Sports and Mens categories), to hybrid sources (online clicks and

news content). This evolves relation data, content data, and hybrid data. We list a few deep

knowledge transfer examples to be investigated in the following.

1. Cross-Dataset Deep Knowledge Transfer. In real-world life, a user typically participates

several online systems to acquire different information services. For example, a user downloads

applications in an app store (e.g., Apple Store, Google Play) and reads news from a website at

the same time. Since uses are overwhelmed in the million-scale news streaming5 , it is necessary

to filter out most of the news articles for individual users. This requires that the recommender

system has made a precise user profile from their past history of reading news. When a user

is just arriving at the system or their interactions are too few to model their user profile, the

cold-start problem rises. It brings us an opportunity to improve the recommendation performance

in the target service by learning across domains. Following the above example, we can transfer

users’ app installation feedback to benefit the learning of news recommendation. Naturally, we

can also transfer users’ reading news to benefit the learning of apps recommendation.

2. Cross-Domain Deep Knowledge Transfer. In E-commerce platforms, some category or

domain is very popular and accumulates lots of rating reviews, say the Amazon Sports category.

Some other domain is maybe newly deployed or it is a cold category, and hence there is few

rating reviews for the users and items which are belonging to this domain, say the Amazon Men

category. The recommender model can not reliably mine the user interests over items in the

Amazon Men category, especially the recommender is a deep learning based model. Considering

that the Men and Sports categories are both the review data in the same platform, the two domains

5https://www.twingly.com/news-data
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Figure 1.4: Word Clouds in Top Two Categories of Microsoft News Corpora. The word
distributions in the two domains are very different.

tend to share some latent user interests. And the knowledge from users’ purchase sequence in the

Sports domain is beneficial to learn their consuming behavior in the Men domain, for example

the user tends to buy slim, luxury brands in both domains.

3. Deep Knowledge Transfer among Hybrid Sources. The online news platform (e.g.,

Microsoft News6 ) collects general categories news articles, ranging from politics and science, to

sports and entertainment. The recommender engine can provide a customized news service by

learning from both user-news click data and the news content itself. This is hybrid data since

both relation data (collaborative filtering) and content data (content-based recommendation)

are modeled for personalization recommendation. The word distribution and feature space are

different across domains. As shown in Figure 5.1, vocabularies are much different for describing

political news and entertainment news, for example the words “white house” and “donald trump”

typically unique to political news while the words “game” and ”player” typically unique to

entertainment news.

Furthermore, there is a privacy concern when the source domain shares their data to the target

domain due to the ever-increasing abuses of personal data [115, 137]. Besides deep knowledge

transfer, we investigate adversarial knowledge transfer to protect the source privacy while to

improve the target performance by learning a privacy-aware transferable representation. We give

an example of adversarial knowledge transfer to be investigated in the following.

4. Adversarial Knowledge Transfer in Privacy-aware Recommendation. On a typically

widely used movie recommendation benchmark, MovieLens7 , there are 50 movies rated by

Female only (e.g., Country Life (1994)), while 350 movies rated by Male only (e.g., Time

6https://microsoftnews.msn.com/
7https://grouplens.org/datasets/movielens/
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(a) Watched by female only (total 50 movies).

(b) Watched by male only (total 350 movies).

Figure 1.5: Infer User’s Gender from Their Watchings: An investigation on the MovieLens
dataset.

Masters (1982)), as shown in Figure 1.5. It implies that the occurrence of a rating, regardless of

its numeric value (real or noisy), leaks the user privacy on revealing their genders. When these

source rating examples are transferred to a target domain, the third party (the target domain or the

malicious attacker) can infer the user privacy of the source domain from the rating examples, even

though the source domain didn’t explicitly provide any user private attributes to the target domain.

In this privacy-aware recommendation scenario, it is naturally to model the recommender and

the attacker in an adversarial learning game.

1.2 Problem Description

Deep transfer learning aims to borrow knowledge in a source neural network into a target

neural network so that the performance in the target domain can be improved. Since the neural

architecture is usually similar between the source and target networks and the difference lies

in learning parameters themselves, we first introduce a general, commonly used base network

which can be used to instantiate them. Before that, we describe the notations and meanings used

in this thesis.

7



Notation Meaning

S, T Source and target domains
U , IS , IT Set of users, source items, and target items
m, nS , nT Size of users, source items, and target items

u, i Indices for users (u = 1, ...,m) and items (i = 1, ..., n)
RS , RT Interaction matrix of source and target domains
ruj , rui Ratings in source and target interaction matrix
P , Q embedding matrices of users and items

d dimensionality of embeddings
W , b weight and bias parameters of some neural network layer

h weight parameters of a logistic layer
λ tradeoff hyperparameter between domains
H linear transformation matrix

Ω(·) penalty functional on some parameter matrix
σ(·) some activation function
η step size of gradient learning
L Size of word vocabulary, or number of hidden layers

[wk]lk=1 The word wk sequence in some l-length document
A internal memory matrix

mk The k-th memory slot
[jl]sl=1 Rated item sequence with size s for some user
αj , aj The normalized and unnormalized attention weight for item j

ψ(·), φ(·) The item content encoder, the user content encoder
FS→T The translator mapping from source to target representation
|| · ||22 The squared L2 norm of some matrix

DS , DT Training data set in source and target domains
Y p ∈ Rm×cp The p-th user private attribute (e.g., p=‘Gender’) and there are cp choices

Y = {Y p}np=1 Denote all n private attributes data by (e.g., Gender, Age).

Table 1.1: Notations and meanings.

1.2.1 Notation

We list the commonly used notations in the thesis in Table 1.1. We are given two domains, a

source domain S (e.g., news recommendation) and a target domain T (e.g., app recommen-

dation). As a running example, we let app recommendation be the target domain and news

recommendation be the source domain. The set of users in both domains are shared, denoted

by U (of size m = |U|). Denote the set of items in S and T by IS and IT (of size nS = |IS|

and nT = |IT |), respectively. Each domain is a problem of collaborative filtering for implicit

feedback [50, 91]. For the target domain, let a binary matrix RT ∈ Rm×nT describe user-app

installing interactions, where an entry rui ∈ {0, 1} is 1 (observed entries) if user u has an interac-

tion with app i and 0 (unobserved) otherwise. Similarly, for the source domain, let another binary

matrix RS ∈ Rm×nS describe user-news reading interactions, where the entry ruj ∈ {0, 1} is 1

8



if user u has an interaction with news j and 0 otherwise. Usually the interaction matrix is very

sparse since a user only consumed a very small subset of all items.

1.2.2 Base Network

A base network consists of four modules with the information flow from the input (u, i) (user-item

pair) to the output r̂ui (their matching score) as follows.

Input : (u, i)→ xu,xi. This module encodes user-item interaction indices. We adopt the

one-hot encoding. It takes user u and item i, and maps them into one-hot encodings xu ∈ {0, 1}m

and xi ∈ {0, 1}n where only the element corresponding to that index is 1 and all others are 0.

Embedding : xu,xi → xui. This module embeds one-hot encodings into continuous

representations via two embedding matrices and then merges them as xui = [P Txu,Q
Txi] to

be the input of successive hidden layers.

Hidden layers: xui  zui. This module takes the continuous representations from the

embedding module and then transforms, through multi-hop say L, to a final latent representation

zui = φL(...(φ1(xui)...). This module consists of multiple hidden layers to learn nonlinear

interaction between users and items.

Output : zui → r̂ui. This module predicts the score r̂ui for the given user-item pair based

on the representation zui from the last layer of multi-hop module. Since we focus on one-class

collaborative filtering, the output is the probability that the input pair is a positive interaction. This

can be achieved by a softmax layer: r̂ui = φo(zui) = 1
1+exp(−hT zui) , where h is the parameter of

the logistic layer.

Note that, this kind of base network can be easily extended to modelling user info and item

content for content-based/hybrid collaborative filtering. We just need to plug a content encoder

enforced on input of user and item indices.

1.2.3 Transfer Unit

After defining the base network for source and target neural networks, the core step of deep

transfer learning is to design the transfer unit between them to enable the knowledge transfer

from the source domain to the target domain (or benefitting both tasks in multi-task learning).

The design methodology of transfer unit can be guided by “what to transfer” between domains.

We will follow it to design model-based, instance-based, and feature-based transfer units in this

thesis. The model-based transfer unit can learn soft-sharing parameters via a linear combination
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Figure 1.6: Two Typical Recommendation Scenarios: Cross-Dataset Recommendation (left part)
and Cross-Domain Recommendation (right part).

between the source and target networks. The instance-based transfer unit can learn adaptive

weights of source instances to be transferred into the target domain. The feature-based transfer

unit can learn a mapping from source representation to the target space so that the cold-start

recommendation can be resolved.

Together the source and target networks and the knowledge transfer unit enforced over them,

the deep transfer learning problem is to optimize all of them to generate a good recommender

system in the target domain.

1.3 Research Challenges

Deep knowledge transfer in recommendation is facing challenges on not only transfer learning

but also deep transfer in recommendation problem. We list three research challenges in the

following.

• Firstly, the deep transfer learning model must have the general ability of addressing cross-

data, cross-domain, and hybrid sources recommendation scenarios. The key step of transfer

learning is to build bridges between source and target domains so that the knowledge

can be transferred from the source neural network to the target. These bridges can be

guided by answering “what to transfer” and thus it can be in three kinds of manners: i)

model-based transfer where part of parameters in source network are transferred to the

target neural network, ii) instance-based transfer where part of examples in source domain
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are transferred to the target domain, and iii) feature-based transfer where transferrable

features are learned across the source and target domains. In real-world life, these transfer

learning approaches need to match the recommendation scenario which is very diverse, as

shown in Figure 1.6. It could be cross-dataset recommendation setting where the target

dataset may come from a news reading platform while the source dataset is from an app

store. It could also be cross-domain recommendation setting where the target domain

may come from an e-commerce smaller category while the source domain is from a larger

category.

• Secondly, the deep transfer learning model has to tackle both homogeneous and heteroge-

neous domains. The core of transfer learning is to construct a mapping from the source

domain to the target. In real-world scenarios, the feature spaces of the two domains can

be homogeneous. For example, we may transfer the knowledge from instances collected

in old days to the target domain where the examples are coming in recent days. The

representational structure is the same so that they can be directly operated and the shared

knowledge is easily to identity to be transferred. In many other cases, we often face

the heterogeneous transfer where the feature space is totally different (say the Apps and

News domains as shown in Figure 1.6) or is much different (say the two new categories

as shown in Figure 5.1). In light of the heterogeneity, the key supervised signal is the

alignment between the two domains which is required to be annotated by humans. For

example, regarding the cross-dataset recommendation as shown in Figure 1.6, we need

to know that a subset of apps is corresponding to what part of the news. The supervised

signal can be that the subset of apps and the part of news are both belonging to the same

user, and then we can exploit such assignment to train the transfer learning algorithms.

The possible weakly supervised signal is that the label8 of the source instances and

the target instances is semantically the same or similar. For example, they both belong

to the same topic “entertainment” in the Apps and News recommendation, or the cate-

gory has hyponymy-hypernymy relationship (“clothes” vs “men clothes”) in the Amazon

cross-domain recommendation.

• Finally, the deep transfer learning model is better to selectively transfer and to have

effective neural architecture, so as to avoid the negative transfer issues. Usually we expect

that the knowledge from the source is beneficial to improve the performance of the task
8The label space is the same between the source and the target domain in this case.
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Figure 1.7: Illustration of the Privacy-Preserving Transfer Learning Setting. The transfer
learning based recommender exploits the knowledge from the source domain, while the attacker
tries to recover user private attributes contained in the transferred knowledge from the latent
representation used by the recommender also.

in the target domain. The negative transfer issue happens when the knowledge transfer

has a negative effect on the target task learning, i.e., hurting the performance in the target

domain. Since the model complexity of deep learning is higher than that of shallow

learning, the negative transfer is more complicated in deep transfer learning. It is better

that the transfer model has the mechanism of selecting to transfer, including selecting

parameters to transfer, selecting instances to transfer, and selecting features to transfer.

The philosophy behind “selecting to transfer” is that many could be better than all.

The success of machine learning and deep learning algorithms is heavily relied on a big

amount of labeled data to train a good good model. Though the aforementioned deep transfer

learning can alleviate the issue of small data in the target domain by transferring the knowledge

from a large source domain, the privacy concerns are raised when the source data is fusing into

the target party. We describe the challenge that a privacy-preserving transfer learning algorithm

faces in such scenario as shown in Figure 1.7.

• Firstly, a technical challenge for protecting user privacy in transfer learning is that the

transferred knowledge has two-fold dilemma roles: its usefulness to improve target recom-

mendation as well as its uselessness to infer source user privacy. Intuitively, it is beneficial
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to improve the target domain performance when the transferable knowledge ‘carries’ the

information of source domain since it can exploit the learned knowledge in the source

domain. However, such information of source knowledge may unintentionally contain

extra aspects of the source domain to recover the private attributes of the source user which

is irrelevant to improve the target domain. As a result, a smart mechanism is needed to

disentangle the transferable representations in terms of such dual roles.

• Secondly, another challenge is that the recommender in the target domain does not know

the attackers and has no control over it during the test. The goal of the recommender

model is to recommend ranked items to users such that any potential adversary cannot infer

users’ private attributes (e.g., age, gender and occupation). However, a challenge is that the

recommendation system does not know the malicious attacker’s model. The attacker can

iteratively adapt its model regarding to existing recommender since the attacker can get

the recommended results from the recommender (the recommended results are publicly

visible to users) but not vice versa. In other words, the attacker is in the dark place which

is not visible to the target recommender while the target recommender is in the light place

which is visible to the attacker.

1.4 Main Contributions

In this thesis, we pursue to address the challenges as mentioned above via innovative research.

With the guidance of answering “what to transfer”, we propose to investigate model-based,

instance-based, and feature-based transfer learning algorithms, as shown in Figure 1.8, which

are capable of addressing the aforementioned research challenges.

• In deep model-based transfer (DMT) (the left part in Figure 1.8), we transfer parameters

in lower layers and learn source and target networks in a multi-task learning way. The

CoNet model is proposed to learn dual knowledge transfer across domains and is capable of

selecting knowledge to transfer via the sparsity-induced technique to avoid negative transfer.

CoNet is effectively applicable to cross-dataset recommendation in heterogeneous transfer

learning since it is a soft-sharing parameter transfer, i.e., learning a linear combination

of lower-layer’s activation maps from the source and target networks. It is the task that

supervises how much sharing is needed to learn. CoNet can decide to make certain layers
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(a) Deep model-based transfer (b) Deep instance-based transfer

(c) Deep feature-based transfer

Figure 1.8: Overview of Our Technical Contributions. We answer “what to transfer” in deep
knowledge transfer for recommendation via the three proposed methods which are (a) model-
based transfer, (b) instance-based transfer, and (c) feature-based transfer, respectively.
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more task specific or choose a more shared combination (i.e., more task general) via the

learnable transfer matrix. In detail, the transfer unit in CoNet is implemented by:

a
(`+1)
S = σ

(
WSa

(`)
S + Ha

(`)
T

)
, (1.1a)

a
(`+1)
T = σ

(
WTa

(`)
T + Ha

(`)
S

)
, (1.1b)

where a
(`)
S and a

(`)
T are lower-layer activation maps while a

(`+1)
S and a

(`+1)
T are the corre-

sponding higher-layer activations maps in source and target networks, WS and WT are

weight matrices in source and target networks, and the transfer matrix H controls the

information from source network to the target and vice versa. The knowledge transferring

happens in two directions, from source to target and from target to source. When target

domain data is sparse, the target network can still learn a good parameter from that of the

source network through the transfer units. It only needs to learn “residual” target parameter

with the reference of source parameter, making the target task learning easier.

• In deep instance-based transfer (DIT) (the middle part in Figure 1.8), we transfer certain

parts of instances in the source domain by adaptively re-weighting them to be used in

the target domain. The TransNet model is proposed to learn an adaptive transfer vector

to capture relations between the target item and source items and is capable of selecting

knowledge to transfer via the attention mechanism to avoid negative transfer. TransNet

can decide to make certain instances more task specific or choose more shared instances

(i.e., more task general) via the learnable instance-transfer weights. In detail, the transfer

unit in TransNet is implemented by:

cui = σ
(∑

j

a
(i)
j xj

)
, (1.2)

where cui is the achieved transfer vector over source item instances summarizing the

knowledge from the source domain, xj is the source instance, and αj is its instance-weight

instantiated by the normalized attention weight computed by the attention function Att(·, ·):

a
(i)
j = Att(xi,xj), (1.3a)

α
(i)
j = softmax(a(i)

j ). (1.3b)

TransNet sharpens the idea that the transfer component can selectively transfer source

items with the guidance of target user-item interactions. This is achieved by attentive
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weights α(i)
j . When the source item j is highly relevant to the target item i given some user,

then the knowledge from the source domain is easily flowing into the target domain with a

high influence weight. When the source item j is irrelevant to the target item i given some

user, then the knowledge from source domain is hard to flow into the target domain with a

small effect weight.

• In deep feature-based transfer (DFT) (the right part in Figure 1.8), we transfer a “good”

feature representation which captures the invariant while reduces the difference between

domains. The TrNews model is proposed to transfer heterogeneous user interests across

domains and transfer item representations selectively. TrNews can be used for modeling

both relational data (e.g., clicks), content data (e.g., news), and their combinations (hybrid

data). In detail, the transfer unit in TrNews is implemented by:

LF = 1
|U0|

∑
u∈U0

||φ̃S(u)− φT (u)||22, (1.4)

where U0 is the shared user set of source and target domains. The transfer unit takes a user’s

source representation φS(u) as the input, and maps it to a hidden representation (called

“code”) via an encoder parameterized by θ, and then gets a approximated representation

φ̃S(u) from the code via a decoder parameterized by θ′. The learned mapping function

F = {θ, θ′} is then used for inferring representations of unseen users in the target domain.

It fulfills knowledge transfer from the source domain to the target via a supervised learning

process.

• In adversarial knowledge transfer (our model dubbed as PrivNet) (as shown in Figure 1.9),

we learn such a transferable representation that it is beneficial to improve the target

performance while it protects the user private attributes in the source domain. The PrivNet

model achieves this goal by modelling the recommender and the attacker in an adversarial

learning game. PrivNet can be easily extended in a plug-and-play way by replacing

the recommender model (shallow or deep) and replacing the attacker model (linear or

nonlinear).

The transfer unit in PrivNet is implemented by as follows. Let x`u|# where # ∈ {S, T}

be user u’s source/target representation in the `-th layer (` = 1, 2, ..., L − 1) where

x1
u|S = [xu,xj] and x1

u|T = [xu,xi]. The transferred representation is computed by

projecting the source representation to the space of target representations with a translation
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matrix H`:

x`u|trans = H`x`u|S, (1.5)

The attacker model in PrivNet predicts the private user attribute from their source repre-

sentation sent to the target domain:

ŷu,p = P (yu,p|xu|trans; θp) = fp(xu|trans; θp), (1.6)

where ŷu,p is the predicted value of user u’s p-th private attribute and p = 1, ..., n. fp is the

prediction model parameterized by θp. For all n private user attributes, the attacker model

minimizes the multitask loss:

L(Θ) = − 1
n

∑
p

∑
Dp

logP (yu,p|xu|trans; θp), (1.7)

where Θ = {θp}np=1 and Dp is training examples for the p-th attribute.

The adversarial learning game in PrivNet works as follows. The generator is a privacy

attacker which tries to accurately infer the user privacy, while the discriminator is an

recommender which learns user preferences and deceives the adversary. The recommender

of PrivNet minimizes:

L̃(θ) = L(θ)− λL(Θ), (1.8)

where the hyperparameter λ controls the influence from the attacker component. PrivNet

seeks to improve the recommendation quality (the first term on the right-hand side) and

fools the adversary by maximizing the loss of the adversary (the second term,). PrivNet

reduces to privacy-agnostic transfer model when λ = 0.

1.5 Thesis Organization

The thesis is organized into seven chapters as shown in Figure 1.10. In Chapter 2, we first

survey recommendation methods w.r.t. shallow matrix factorization deep learning techniques,

and transfer learning works w.r.t model-based transfer, instance-based transfer and feature-based

transfer, and then we summarize some closely related works on adversarial learning. In chapters

3, 4, and 5, we respectively study each of the three different deep knowledge transfer problem

settings in terms of model-based, instance-base, feature-based. In Chapter 6, we introduce

our work on learning privacy-preserving representations via adversarial knowledge transfer.
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Figure 1.9: Adversarial knowledge transfer. It has three parties (source party, target party, and
attacker). The privacy attacker infers user privacy from the transferred representations. Our
proposed PrivNet method exploits the knowledge from the source domain with regularization
from the adversary loss of the attacker via modelling them in an adversarial learning game.
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Figure 1.10: The Organization of Thesis.

Finally, in Chapter 7, we conclude our work with and then we describe potential future research

directions.
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Chapter 2

Background

In this chapter, we will first review some most recent developments in recommendation techniques

especially the deep learning based models, and then three transfer learning approaches including

model-based transfer, instance-based transfer, and feature-based transfer.

2.1 Recommendation Techniques

We introduce both shallow and deep recommender models in this section. The typical example

of shallow model is the matrix factorization technique while the typical example of deep model

is the neural collaborative filtering.

2.1.1 Matrix Factorization

Rating scores are the explicit user feedback and matrix factorization (MF) is a state-of-the-art

recommender method to exploit this rating information. MF techniques have gained popularity

and become the standard recommender approaches due to their accuracy and scalability. They

have probabilistic interpretation with Gaussian noise and are very flexible to add side data

sources for recommender such as reviews content and social relations introduced in the following

subsections.

MF based RSs are mainly to find the latent user-specific matrix U = [U1, ..., Um] ∈ Rd×m

and item-specific matrix V = [V1, ..., Vn] ∈ Rd×n, where d is the number of latent factors,

obtained by solving the following problem:

min
U,V

∑
ri,j 6=0

(ri,j − r̂i,j)2 + λ(‖U‖2
F + ‖V ‖2

F ), (2.1)
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Figure 2.1: The Architecture of a Typical Neural Collaborative Filtering with Three Hidden
Layers.

where the predicted rating is computed by:

r̂i,j = µ+ bi + bj + UT
i Vj, (2.2)

and regularization parameter λ controls over-fitting. The rating mean is captured by µ; bi and

bj are rating biases of ui and of vj . The d-dimensional feature vectors Ui and Vj represent

preferences for user i and characteristics for item j, respectively. The dot products UT
i Vj capture

the interaction or match degree between users and items.

2.1.2 Deep Learning

Neural networks are proposed to push the learning of feature vectors towards non-linear repre-

sentations, including the neural network matrix factorization (NNMF) and multilayer perceptron

(MLP) [23, 42]. The basic MLP architecture is extended to regularize the factors of users and

items by social and geographical information [132]. Other neural approaches learn from the

explicit feedback for rating prediction task [11, 147]. We focus on learning from the implicit

feedback for top-N recommendation [127]. CF models, however, suffer from the data sparsity

issue.

A basic neural network is similar to the Deep model in [15, 17] and the MLP model in [42].

The base network consists of four modules which has been introduced in Chapter 1.2.2. We

illustrate a three hidden-layers base network in Figure 2.1.
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The basic neural network generalizes matrix factorization. Let P Txi be that of latent user

factors Ui in MF, and QTxj be that of latent item factors Vj in MF. MF computes the predicted

score by r̂ij = Ui
TVj (ignoring the biases). We replace the concatenation in the embedding

module with element-wise multiplication:

xij = (P Txi)� (QTxj). (2.3)

It requires that the dimensions of latent features of users and items are the same in this case

(denoted as d). We do not perform computation in hidden layers and let the output layer be the

identity mapping. In this way, the prediction is the same whatever it is computed by matrix

factorization or neural network.

2.2 Transfer Learning Approaches

Transfer learning (TL) aims at improving the performance of the target domain by exploiting

knowledge from source domains [93]. We introduce three transfer learning approaches including

model-based transfer, instance-based transfer, and feature-based transfer.

2.2.1 Model-based Knowledge Transfer

Transfer learning in recommendation [9] is an effective technique to alleviate the data sparsity

issue in one domain by exploiting the knowledge from other domains. Typical methods ap-

ply matrix factorization [95, 111, 133] and representation learning [29, 75, 77, 132, 143] on

each domain and share the user (item) factors, or learn a cluster level rating pattern [61, 142].

Transfer learning is to improve the target performance by exploiting knowledge from auxiliary

domains [13, 24, 30, 93, 144]. One transfer strategy (two-stage) is to initialize a target network

with transferred representations from a pre-trained source network [90, 140]. Another transfer

strategy (end-to-end) is to transfer knowledge in a mutual way such that the source and target

networks benefit from each other during the training, with examples including the cross-stitch

networks [83] and collaborative cross networks [43].

The typical TL technique in neural networks is two-step: initialize a target network with

transferred features from a pre-trained source network [90, 140]. Similar to TL, the multitask

learning (MTL) is to leverage useful knowledge in multiple related tasks to help each other [10,

144]. Multi-view learning [24] is closely related to MTL. The cross-stitch network (CSN) [83]

enables information sharing between two base networks.
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(a) Hard Sharing (b) Soft sharing by regularization

(c) Soft sharing by linear combination via scalar multiplication

Figure 2.2: Three Model-based Transfer Learning Paradigms. (a) Hard Sharing: sharing hidden
layers directly while keeping the task-specific layers. Soft sharing: No directly sharing of
parameters and (b) using regularization terms to encourage parameters to be similar, and (c)
modeling shared parameters by learning a linear combination of input activation maps from two
networks.
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We illustrate three typical model-based transfer learning approaches in Figure 2.2.

2.2.2 Instance-based Knowledge Transfer

Transfer learning (TL) aims at improving the performance of the target domain by exploiting

knowledge from source domains [93]. Similar to TL, the multitask learning (MTL) is to

leverage useful knowledge in multiple related tasks to help each other [10, 144]. The cross-stitch

network [83] and its sparse variant [43] enable information sharing between two base networks

for each domain in a deep way. Robust learning is also considered during knowledge transfer [40].

These methods treat knowledge transfer as a global process with shared global parameters and

do not match source items with the specific target item given a user.

The K-nearest neighbors method is used to find relevant source instances to be transferred

into the target domain [33]. It first projects both source and target instances into the shared

feature space, and then it selects nearest neighbors instances in the source domain for each

target domain training sample in such low-level feature space (see the right part as shown in

Figure 2.3).

We illustrate two typical instance-based transfer learning approaches in Figure 2.3.

2.2.3 Feature-based Knowledge Transfer

Transfer learning aims at improving the performance of a target domain by exploiting knowledge

from source domains [93]. A special setting is domain adaptation where a source domain

provides labeled training examples while the target domain provides instances on which the

model is meant to be deployed [34, 66]. The coordinate system transfer (CST) [95] firstly learns

the principle coordinate of users in the source domain, and then transfers it to the target domain in

the way of warm-start initialization. This is equivalent to an identity mapping from users’ source

representations to their corresponding target representations. TCB [69] learns a linear mapping to

translate target feature examples to the source feature space because there are many labelled data

in the source domain. This linear strategy is also used in CoNet [43] and DDTCDR [65] which

transforms the source representations to the target domain by a translation matrix. Nonlinear

mapping strategy [28, 77, 149] is to learn a supervised mapping function between source and

target latent factors by using neural networks. SSCDR [54] extends them to the semi-supervised

mapping setting. Our translator is general to accommodate these identity, linear, and nonlinear

transfer-learning strategies.
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(a) Weight of source instance is part of the model parameters

(b) Target example’s nearest neighbors as source transferred instances in shared feature space

Figure 2.3: Two Instance-based Transfer Learning Methods. (a) The method selects source
instances by the model parameters itself (i.e., the instance weight is part of the parameter of the
recommender model) and (b) the method selects source instances by the nearest neighbors of
target examples found in the shared feature space.
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Approach Transfer strategy Formulation

CST [95] Identity mapping φT (u) = φS(u)
TCB [69]

DDTCDR [65] Linear mapping
φT (u) = HφS(u)
H is orthogonal

EMCDR [77] Nonlinear mapping φT (u) = MLP(φS(u))

Table 2.1: Different Strategies in Feature-based Transfer Learning.

We summarize three strategies in feature-based transfer learning approaches in Table 5.2 and

illustrate them in Figure 2.4.

2.2.4 Framework of deep transfer learning: An Anatomy

As shown in Figure 2.5, a deep transfer learning model can be decomposed into two basic

parts. The first basic part is to define what the base network is. This is to answer how to model

the individual domains, i.e., the source domain and target domain. The instantiation of a base

network can arbitrarily implemented by any deep models including multi-layer feedforward

neural networks, recurrent neural networks, and convolutional networks. The other part is the

transfer unit which is the core of knowledge transfer. It builds the bridge across domains and

enables the knowledge transfer from the source domain to the target domain. The model-based,

instance-based, and feature-based transfer learning approaches can be instantiated by varying

with the different transfer units.

2.3 Adversarial Learning

Existing privacy-preserving techniques mainly belong to three research threads. One thread

adds noise (e.g., differential privacy [22]) to the released data or the output of recommender

systems [53, 81, 82, 119, 121]. One thread perturbs user profiles such as adding (or delet-

ing/changing) dummy items to the user history so that it hides the user’s actual ratings [100, 122].

Adding noise and perturbing ratings may still suffer from privacy inference attacks when the

attacker can successfully distinguish the true profiles from the noisy/perturbed ones. Further-

more, they may degrade performance since data is corrupted. Another thread uses adversary

loss [5, 106] to formulate the privacy attacker and the recommender system as an adversarial

learning problem. However, they face the data sparsity issues. A recent work [103] trains linear

classifiers to predict a protected attribute and then remove it by projecting the representation
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(a) Identity mapping, i.e., no adaptation (b) Linear Mapping

(c) Nonlinear mapping in a dilated way

Figure 2.4: Three Feature-based Transfer Learning Paradigms. Example methods of each
paradigm are shown in Table 5.2. (a) The identity mapping equals to no adaptation. (b) The
matrix symbol means the feature mapping is implemented by linear transfer. (c) The neural
network icon mean the feature mapping is implemented by nonlinear transfer in a dilated way
(i.e., the hidden layers have more number of neurons than the input/output layers.).
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Figure 2.5: Framework of deep transfer learning: An Anatomy. It can be composed into two
parts. The red part is the base network which is to model the individual domains (source domain
and target domain). The blue part is the transfer unit which is to build the bridge across domains
answering “what to transfer” (and “how to transfer”). This figure is adapted from [93].

on its null-space. Some other work uses encryption and federated learning so as to protect the

personal data without affecting performance [14, 87, 118]. They suffer from efficiency and

scalability due to high cost of computation and communication.
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Chapter 3

Deep Model-based Knowledge Transfer in

Recommendation

The cross-domain recommendation technique is an effective way of alleviating the data sparse

issue in recommender systems by leveraging the knowledge from relevant domains. Transfer

learning is a class of algorithms underlying these techniques. In this chapter, we propose a novel

transfer learning approach for cross-domain recommendation by using neural networks as the

base model. In contrast to the matrix factorization based cross-domain techniques, our method

is deep transfer learning, which can learn complex user-item interaction relationships. We

assume that hidden layers in two base networks are connected by cross mappings, leading to the

collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains

by introducing cross connections from one base network to another and vice versa. CoNet is

achieved in multi-layer feedforward networks by adding dual connections and joint loss functions,

which can be trained efficiently by back-propagation. The proposed model is thoroughly

evaluated on two large real-world datasets. It outperforms baselines by relative improvements

of 7.84% in NDCG. We demonstrate the necessity of adaptively selecting representations to

transfer. Our model can reduce tens of thousands training examples comparing with non-transfer

methods and still has the competitive performance with them.

3.1 Introduction

Collaborative filtering (CF) approaches, which model the preference of users on items based on

their past interactions such as product ratings, are the corner stone for recommender systems.

Matrix factorization (MF) is a class of CF methods which learn user latent factors and item latent
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factors by factorizing their interaction matrix [59, 84]. Neural collaborative filtering is another

class of CF methods which use neural networks to learn the complex user-item interaction

function [15, 23, 42]. Neural networks have the ability to learn highly nonlinear function, which

is suitable to learn the complex user-item interaction. Both traditional matrix factorization and

neural collaborative filtering, however, suffer from the cold-start and data sparse issues.

One effective solution is to transfer the knowledge from relevant domains and the cross-

domain recommendation techniques address such problems [8, 9, 61, 94]. In real life, a user

typically participates several systems to acquire different information services. For example,

a user installs applications in an app store and reads news from a website at the same time. It

brings us an opportunity to improve the recommendation performance in the target service (or

all services) by learning across domains. Following the above example, we can represent the app

installation feedback using a binary matrix where the entries indicate whether a user has installed

an app. Similarly, we use another binary matrix to indicate whether a user has read a news article.

Typically these two matrices are highly sparse, and it is beneficial to learn them simultaneously.

This idea is sharpened into the collective matrix factorization (CMF) [111] approach which

jointly factorizes these two matrices by sharing the user latent factors. It combines CF on a target

domain and another CF on an auxiliary domain, enabling knowledge transfer [91, 144]. CMF,

however, is a shallow model and has the difficulty in learning the complex user-item interaction

function [23, 42]. Moreover, its knowledge sharing is only limited in the lower level of user

latent factors.

Motivated by benefitting from both knowledge transfer learning and learning interaction

function, we propose a novel deep transfer learning approach for cross-domain recommendation

using neural networks as the base model. Though neural CF approaches are proposed for single

domain recommendation [42], there are few related works to study knowledge transfer learning

for cross-domain recommendation using neural networks. Instead, neural networks have been

used as the base model in natural language processing [16, 138] and computer vision [21, 83, 140].

We explore how to use a neural network as the base model for each domain and enable the

knowledge transfer on the entire network across domains. Then a few questions and challenges

are raised: 1) What to transfer/share between these individual networks for each domain? 2)

How to transfer/share during the learning of these individual networks for each domain? and 3)

How is the performance compared with single domain neural learning and shallow cross-domain

models?
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This chapter aims at proposing a novel deep transfer learning approach by answering these

questions under cross-domain recommendation scenario. The usual transfer learning approach

is to train a base network and then copy its first several layers to the corresponding first layers

of a target network with fine-tuning or parameter frozen [140]. This way of transferring has

possibly two weak points. Firstly, the shared-layer assumption is strong in practice as we find

that it does not work well on real-world cross-domain datasets. Secondly, the knowledge transfer

happens in one direction, i.e., only from source to target. Instead, we assume that hidden layers

in two base networks are connected by dual mappings, which do not require them to be identical.

We enable dual knowledge transfer across domains by introducing cross connections from one

base network to another and vice versa, letting them benefit from each other. These ideas are

sharpened into the proposed collaborative cross networks (CoNet). CoNet is achieved in simple

multi-layer feedforward networks by using dual shortcut connections and joint loss functions,

which can be trained efficiently by back-propagation.

3.2 Problem Description and Challenges

We first give the notations and describe the problem setting (Sec. 3.2.1). We then review a multi-

layer feedforward neural network as the base network for collaborative filtering (Sec. 4.2.2).

3.2.1 Notation

We are given two domains, a source domain S (e.g., news recommendation) and a target domain

T (e.g., app recommendation). As a running example, we let app recommendation be the target

domain and news recommendation be the source domain. The set of users in both domains are

shared, denoted by U (of size m = |U|). Denote the set of items in S and T by IS and IT (of

size nS = |IS| and nT = |IT |), respectively. Each domain is a problem of collaborative filtering

for implicit feedback [50, 91]. For the target domain, let a binary matrix RT ∈ Rm×nT describe

user-app installing interactions, where an entry rui ∈ {0, 1} is 1 (observed entries) if user u has

an interaction with app i and 0 (unobserved) otherwise. Similarly, for the source domain, let

another binary matrix RS ∈ Rm×nS describe user-news reading interactions, where the entry

ruj ∈ {0, 1} is 1 if user u has an interaction with news j and 0 otherwise. Usually the interaction

matrix is very sparse since a user only consumed a very small subset of all items.

For the task of item recommendation, each user is only interested in identifying top-N items.

31



The items are ranked by their predicted scores:

r̂ui = f(u, i|Θ), (3.1)

where f is the interaction function and Θ are model parameters. For matrix factorization (MF)

techniques, the match function is the fixed dot product:

r̂ui = P T
u Qi, (3.2)

and parameters are latent vectors of users and items Θ = {P ,Q} where P ∈ Rm×d,Q ∈ Rn×d

and d is the dimension. For neural CF approaches, neural networks are used to parameterize

function f and learn it from interactions:

f(xui|P ,Q, θf ) = φo(φL(...(φ1(xui))...)), (3.3)

where the input xui = [P Txu,Q
Txi] is merged from projections of the user and the item, and

the projections are based on their one-hot encodings xu ∈ {0, 1}m,xi ∈ {0, 1}n and embedding

matrices P ∈ Rm×d,Q ∈ Rn×d. The output and hidden layers are computed by φo and {φl} in

a multilayer feedforward neural network (FFNN), and the connection weight matrices and biases

are denoted by θf .

In our transfer/multitask learning approach for cross-domain recommendation, each domain is

modelled by a neural network and these networks are jointly learned to improve the performance

through mutual knowledge transfer. We review the base network in the following subsection

before introducing the proposed model.

3.2.2 Base Network

We adopt an FFNN as the base network to parameterize the interaction function (see Eq.(4.2)).

The base network is similar to the Deep model in [15, 17] and the MLP model in [42]. The base

network, as shown in Figure 3.2 (the gray part or the blue part), consists of four modules with

the information flow from the input (u, i) to the output r̂ui as follows.

Input : (u, i)→ xu,xi. This module encodes user-item interaction indices. We adopt the

one-hot encoding. It takes user u and item i, and maps them into one-hot encodings xu ∈ {0, 1}m

and xi ∈ {0, 1}n where only the element corresponding to that index is 1 and all others are 0.

Embedding : xu,xi → xui. This module embeds one-hot encodings into continuous

representations via two embedding matrices and then merges them as xui = [P Txu,Q
Txi] to

be the input of successive hidden layers.
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Hidden layers: xui  zui. This module takes the continuous representations from the

embedding module and then transforms, through multi-hop say L, to a final latent representation

zui = φL(...(φ1(xui)...). This module consists of multiple hidden layers to learn nonlinear

interaction between users and items.

Output : zui → r̂ui. This module predicts the score r̂ui for the given user-item pair based

on the representation zui from the last layer of multi-hop module. Since we focus on one-class

collaborative filtering, the output is the probability that the input pair is a positive interaction.

This can be achieved by a softmax layer:

r̂ui = φo(zui) = 1
1 + exp(−hTzui)

, (3.4)

where h is the parameter.

3.2.3 Cross-stitch Networks

We first introduce an intuitive model to realize cross-domain recommendation using neural

networks, and point out several intrinsic strong assumptions limiting its use, which inspire the

design of our model in the next section.

Given two activation maps aA and aB from the l-th layer for two tasks A and B, cross-stitch

convolutional networks (CSN) [83] learn linear combinations ãA, ãB of both the input activations

and feed these combinations as input to the successive layers’ filters (see Fig. 3.1a):

ãijA = αSa
ij
A + αDa

ij
B, (3.5a)

ãijB = αSa
ij
B + αDa

ij
A, (3.5b)

where the shared parameter αD controls information shared/ transferred from the other

network, αS controls information from the task-specific network, and (i, j) is the location in the

activation map.

Although the cross-stitch unit indeed incorporates knowledge from the source domain (and

target domain vice versa), there are several limitations of this simple stitch unit. Firstly, cross-

stitch networks cannot process the case that the dimensions of contiguous layers are different.

In other words, it assumes that the activations in successive layers are in the same vector space.

This is not an issue in convolutional networks for computer vision since the activation maps

of contiguous layers are in the same space [60]. For collaborative filtering, however, it is not

the case in typical multi-layer FFNNs where the architecture follows a tower pattern: the lower
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(a) Cross-stitch unit (b) Cross connection unit

Figure 3.1: The cross-stitch unit [83] (left) and the proposed cross connection unit (right). To
enable knowledge transfer, the shared αD in the cross-stitch network is a scalar while the shared
H in the proposed collaborative cross network is a matrix.

layers are wider and higher layers have smaller number of neurons [17, 42]. Secondly, it assumes

that the representations from other networks are equally important with weights being all the

same scalar αD. Some features, however, are more useful and predictive and it should be learned

attentively from data [130]. Thirdly, it assumes that the representations from other networks are

all useful since it transfers activations from every location in a dense way. The sparse structure,

however, plays a key role in general learning paradigm [21]. Instead, our model can be extended

to learn the sparse structure on the task relationship matrices which are defined in Eq. (3.9),

with the help of the existing sparsity-induced regularization. As we will see in the experiments

(see Table 3.3 and Figures 3.3 and 3.4), the sparse structure is necessary for generalization

performance.

3.3 Methodology

3.3.1 Collaborative Cross Networks

To alleviate the limitations of the cross-stitch networks, we propose collaborative cross networks

(CoNet) to transfer knowledge for the cross-domain recommendation. The core component

is cross connection units (Sec. 3.3.1). Our cross unit generalizes the cross-stitch (Sec. 3.3.1)

and exploits the sparse structure (Sec. 3.3.1). We describe the model learning from implicit
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feedback datasets and the optimization process of the joint loss. A complexity analysis is also

given (Sec. 4.3.3).

Cross Connections Unit

In this section, we present a novel soft-sharing approach for transferring knowledge for cross-

domain recommendation. It relaxes the hard-sharing assumption [140] and is motivated by the

cross-stitch networks [83].

We now introduce the cross connections unit to enable dual knowledge transfer as shown in

Fig. 3.1b. The central idea is simple, using a matrix rather than a scalar to transfer. Similarly to

the cross-stitch network, the target network receives information from the source network and

vice versa. In detail, let aapp be the representations of the l-th hidden layer and ãapp be the input

to the l + 1-th in the app network, respectively. Similarly, they are anews and ãnews in the news

network. The cross unit implements as follows:

ãapp = Wappaapp + Hanews, (3.6a)

ãnews = Wnewsanews + Haapp, (3.6b)

where Wapp and Wnews are weight matrices, and the matrix H controls the information from

news network to app network and vice versa. The knowledge transferring happens in two

directions, from source to target and from target to source. We enable dual knowledge transfer

across domains and let them benefit from each other. When target domain data is sparse, the

target network can still learn a good representation from that of the source network through the

cross connection units. It only needs to learn “residual” target representations with the reference

of source representations, making the target task learning easier and hence alleviating the data

sparse issues. The role of matrix H is similar to the scalar αD in the sense of enabling knowledge

transfer between domains.

We give a closer look at the matrix H for it can alleviate all three issues faced by cross-

stitch unit. Firstly, the successive layers can be in different vector space (spaces with different

dimensions) since the matrix H can be used to match their dimension. For example, if the

l-th layer (aapp and anews) has dimension 128, and the (l + 1)-th layer (ãapp and ãnews) has

dimension 64, then the matrix H ∈ R64×128. Secondly, the entries of H are learned from data.

They are likely not to be all the same, showing that the importances of transferred representations

are different for each neuron/position. Thirdly, we can enforce some prior on the matrix H to
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exploit the structure of the neural architecture. The sparse structure can be enforced to adaptively

select useful representations to transfer. Based on the cross connection units, we propose the

CoNet models in the following sections, including a basic model (Sec. 3.3.1) and an adaptive

variant (Sec. 3.3.1).

Basic Model

We propose the collaborative cross network (CoNet) model by adding cross connection units (see

Sec. 3.3.1) and joint loss (see Eq.(3.12)) to the entire FFNN, as shown in Figure 3.2. We firstly

describe a basic model in this section and then present an adaptive variant in the next section.

We decompose the model parameters into two parts, task-shared and task-specific:

Θapp = {P , (H l)L1 } ∪ {Qapp, θf app} (3.7a)

Θnews = {P , (H l)L1 } ∪ {Qnews, θfnews}, (3.7b)

where P is the user embedding matrix and Q are the item embedding matrices with the subscript

specifying the corresponding domain. The θf = {(W l, bl)Ll=1,h} are the connection weight

matrices and biases in the L-layer FFNN where h is the output weight as shown in Eq.(3.4).

We stack the cross connections units on the top of the shared user embeddings, enabling deep

knowledge transfer. Denote by W l the weight matrix connecting from the l-th to the l+1-th layer

(we ignore biases for simplicity), and by H l the linear projection underlying the corresponding

cross connections. Then two base networks are coupled by cross connections:

al+1
app = σ(W l

appa
l
app + H lalnews), (3.8a)

al+1
news = σ(W l

newsa
l
news + H lalapp), (3.8b)

where the function σ(·) is the widely used rectified activation units (ReLU) [85]. We can see that

al+1
app receives two information flows: one is from the transform gate controlled by W l

app and one

is from the transfer gate controlled by H l (similarly for the al+1
news in source network). We call

H l the relationship/transfer matrix since it learns to control how much sharing is needed. To

reduce model parameters and make the model compact, we use the same linear transformation

H l for two directions, similar to the cross-stitch networks. Actually, using different matrices for

two directions did not improve results on the evaluated datasets.
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Figure 3.2: The proposed collaborative cross networks (CoNet) architecture (a version of three
hidden layers and two cross units). We adopt a multilayer FFNN as the base network (grey or
blue part, see Sec. 4.2.2). The red dotted lines indicate the cross connections which enable the
dual knowledge transfer across domains. A cross unit is illustrated in the dotted rectangle box
(see Fig. 3.1b).
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Adaptive Model

As we can see, the task relationship matrices {H l} are crucial to the proposed CoNet model.

We further enforce these matrices to have some structure. The assumption is that not all

representations from another network are useful. We may expect that the representations coming

from other domains are sparse and selective. This corresponds to enforcing a sparse prior on

the structure and can be achieved by penalizing the task relationship matrix {H l} via some

regularization. It may help the individual network to learn intrinsic representations for itself and

other tasks. In other words, {H l} adaptively controls when to transfer.

We adopt the widely used sparsity-induced regularization—least absolute shrinkage and

selection operator (lasso) [113]. In detail, denote by r×p the size of matrix H l (usually r = p/2).

That is, H l linearly transforms representations alnews ∈ Rp in the news network and the result is

as part of the input to the next layer ãl+1
app ∈ Rr in the app network (see Eq.(3.8) and Eq.(3.6)).

Denote by hij the (i, j) entry of H l. To induce overall sparsity, we impose the `1-norm penalty

on the entries {hij} of H l:

Ω(H l) = λ
r∑
i=1

p∑
j=1
|hij|, (3.9)

where hyperparameter λ controls the degree of sparsity. This corresponds to the lasso regulariza-

tion. We call this sparse variant as the SCoNet model.

Other priors like low-rank (H ≈ UTV ) factorization are alternatives of sparse structure.

And the lasso variants like group lasso and sparse group lasso are also possible. We adopt the

general sparse prior and the widely used lasso regularization. The others are left for future work.

3.3.2 Objective and Optimization

Due to the nature of the implicit feedback and the task of item recommendation, the squared loss

(r̂ui − rui)2 is not suitable since it is usually for rating regression/prediction. Instead, we adopt

the cross-entropy loss:

L0 = −
∑

(u,i)∈R+∪R−

rui log r̂ui + (1− rui) log(1− r̂ui), (3.10)

where R+ and R− are the observed interaction matrix and randomly sampled negative exam-

ples [91], respectively. This objective function has probabilistic interpretation and is the negative

logarithm likelihood of the following likelihood function:

L(Θ|R+ ∪R−) =
∏

(u,i)∈R+

r̂ui
∏

(u,i)∈R−

(1− r̂ui), (3.11)
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where Θ are model parameters.

Now we define the joint loss function, leading to the proposed CoNet model which can be

trained efficiently by back-propagation. Instantiating the base loss (L0) described in Eq. (3.10)

by the loss of app (Lapp) and loss of news (Lnews) recommendation, the objective function for

the CoNet model is their joint losses:

L(Θ) = Lapp(Θapp) + Lnews(Θnews), (3.12)

where model parameters Θ = Θapp ∪Θnews. Note that Θapp and Θnews share user embeddings

and transfer matrices {P , (H l)Ll=1}. For the CoNet-sparse model, the objective function is added

by the term Ω(H l) in Eq.(3.9).

The objective function can be optimized by stochastic gradient descent (SGD) and its variants

like adaptive moment method (Adam) [56]. The update equations are:

Θnew ← Θold − η∂L(Θ)
∂Θ , (3.13)

where η is the learning rate. Typical deep learning library like TensorFlow1 provides automatic

differentiation and hence we omit the gradient equations ∂L(Θ)
∂Θ which can be computed by chain

rule in back-propagation (BP).

3.3.3 Complexity Analysis

The model parameters Θ include:

{P , (H l)Ll=1} ∪ {Qapp, (W l
app, b

l
app)Ll=1,happ} ∪ {Qnews, (W l

news, b
l
news)Ll=1, hnews}, (3.14)

where the embedding matrices P , Qapp and Qnews contain a large number of parameters since

they depend on the input size of users and items. Typically, the number of neurons in a hidden

layer is about one hundred. That is, the size of connection weight matrices and task relationship

matrices is hundreds by hundreds. In total, the size of model parameters is linear with the input

size and is close to the size of typical latent factors models [59] and neural CF approaches [42].

During training, we update the target network using the target domain data and update the

source network using the source domain data. The learning procedure is similar to the cross-stitch

networks [83]. And the cost of learning each base network is approximately equal to that of

running a typical neural CF approach [42]. In total, the entire network can be efficiently trained

by BP using mini-batch stochastic optimization.
1https://www.tensorflow.org
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Table 3.1: Datasets and Statistics.

Dataset #Users
Target Domain Source Domain

#Items #Interactions Density #Items #Interactions Density

Mobile 23,111 14,348 1,164,394 0.351% 29,921 617,146 0.089%
Amazon 80,763 93,799 1,323,101 0.017% 35,896 963,373 0.033%

3.4 Experiments

We conduct thorough experiments to evaluate the proposed models. We show their superior

performance over the state-of-the-art recommendation algorithms in a wide range of baselines

and demonstrate the effectiveness of the sparse variant to select representations. We quantify

the benefit of knowledge transfer by reducing training examples. Furthermore, we conduct

investigations on the sensitivity to hyperparameter. We analyze the optimization efficiency to

help understand the proposed models.

3.4.1 Data Sets and Evaluation Protocol

We begin the experiments by introducing the datasets, evaluation protocol, baselines, and

implementation details.

Data Sets

We evaluate on two real-world cross-domain datasets. The first dataset, Mobile2 , is provided by

a large internet company, i.e., Cheetah Mobile3 . The information contains logs of user reading

news, the history of app installation, and some metadata such as news publisher and user gender

collected in one month in the US. The dataset we used contains 1,164,394 user-app installations

and 617,146 user-news reading records. There are 23,111 shared users, 14,348 apps, and 29,921

news articles. We aim to improve the app recommendation by transferring knowledge from

relevant news reading domain. The data sparsity is over 99.6%.

The second dataset is a public Amazon dataset4 , which has been widely used to evaluate

the performance of collaborative filtering approaches [41]. We use the two largest categories,

Books and Movies & TV, as the cross-domain. We convert the ratings of 4-5 as positive samples.

The dataset we used contains 1,323,101 user-book ratings and 963,373 user-movie ratings.

2An anonymous version can be released later.
3http://www.cmcm.com/en-us/
4http://snap.stanford.edu/data/web-Amazon.html
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There are 80,763 shared users, 93,799 books, and 35,896 movies. We aim to improve the

book recommendation by transferring knowledge from relevant movie watching domain. The

data sparsity is over 99.9%. The statistics are summarized in Table 5.1. As we can see, both

datasets are very sparse and hence we hope improve performance by transferring knowledge

from auxiliary domains.

Evaluation Protocol

For item recommendation task, the leave-one-out (LOO) evaluation is widely used and we

follow the protocol in [42]. That is, we reserve one interaction as the test item for each

user. We determine hyper-parameters by randomly sampling another interaction per user as

the validation/development set. We follow the common strategy which randomly samples 99

(negative) items that are not interacted by the user and then evaluate how well the recommender

can rank the test item against these negative ones.

Since we aim at top-N item recommendation, the typical evaluation metrics are hit ratio

(HR), normalized discounted cumulative gain (NDCG), and mean reciprocal rank (MRR), where

the ranked list is cut off at topN = 10. HR intuitively measures whether the reserved test item is

present on the top-N list, defined as:

HR = 1
|U|

∑
u∈U

δ(pu ≤ topN),

where pu is the hit position for the test item of user u, and δ(·) is the indicator function. NDCG

and MRR also account for the rank of the hit position, respectively defined as:

NDCG = 1
|U|

∑
u∈U

log 2
log(pu + 1) , MRR = 1

|U|
∑

u∈U
1
pu
.

A higher value indicates better performance.

Implementation

For BPRMF, we use LightFM’s implementation5 which is a popular CF library. For CDCF, we

adapt the official libFM implementation6 . For MLP, we use the code released by its authors7

. For CMF, we use a Python version reference to the original Matlab code8 . Our methods are

5https://github.com/lyst/lightfm
6http://www.libfm.org
7https://github.com/hexiangnan/neural_collaborative_filtering
8http://www.cs.cmu.edu/~ajit/cmf/
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Baselines Shallow method Deep method

Single-domain BPRMF [105] MLP [42]
Cross-domain CDCF [71], CMF [111] MLP++, CSN [83]

Table 3.2: Categorization of Baselines.

implemented using TensorFlow. Parameters are randomly initialized from Gaussian N (0, 0.012).

The optimizer is Adam with initial learning rate 0.001. The size of mini batch is 128. The ratio

of negative sampling is 1. As for the design of network structure, we adopt a tower pattern,

halving the layer size for each successive higher layer. Specifically, the configuration of hidden

layers in the base network is [64→ 32→ 16→ 8]. This is also the network configuration of the

MLP model. For CSN, it requires that the number of neurons in each hidden layer is the same.

The configuration notation [64] ∗ 4 equals [64→ 64→ 64→ 64]. We investigate several typical

configurations.

3.4.2 Baselines

We compare with various baselines:

BPRMF: Bayesian personalized ranking [105] is a typical latent factors CF approach which

learns the user and item factors via matrix factorization and pairwise rank loss. It computes the

prediction score by r̂ui = P T
u Qi (see Eq.(3.2)). It is a shallow model and learns on the target

domain only.

MLP: Multilayer perceptron [42] is a typical neural CF approach which learns user-item

interaction function using neural networks. MLP corresponds to the base network as described

in Section 4.2.2. It is a deep model and learns on the target domain only.

MLP++: We combine two MLPs by sharing the user embedding matrix only. This is a

degenerated CoNet which has no cross connection units. It is a simple/shallow knowledge

transfer approach applied to two domains.

CDCF: Cross-Domain CF with factorization machines (FM) [71] is a state-of-the-art cross-

domain recommendation which extends FM [104]. It is a context-aware approach which applies

factorization on the merged domains (aligned by the shared users). That is, the auxiliary domain

is used as context. On the Mobile dataset, the context for a user in the target app domain is

her history of reading news in the source news domain. Similarly, the context for a user in

the target book domain is her history of watching movies in the source movie domain on the
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Table 3.3: Comparison results of different methods on two datasets. The best results are boldfaced
and the best baselines are marked with stars.

Dataset Metric BPRMF CMF CDCF MLP MLP++ CSN CoNet SCoNet improve paired t-test

HR .6175 .7879 .7812 .8405 .8445 .8458* .8480 .8583 1.47% p = 0.20
Mobile NDCG .4891 .5740 .5875 .6615 .6683 .6733* .6754 .6887 2.29% p = 0.25

MRR .4489 .5067 .5265 .6210 .6268 .6366* .6373 .6475 1.71% p = 0.34
HR .4723 .3712 .3685 .5014 .5050* .4962 .5167 .5338 5.70% p = 0.02

Amazon NDCG .3016 .2378 .2307 .3143 .3175* .3068 .3261 .3424 7.84% p = 0.03
MRR .2971 .1966 .1884 .3113* .3053 .2964 .3163 .3351 7.65% p = 0.05

Amazon dataset. The feature vector for the input is a sparse vector x ∈ Rm+nT +nS where

the non-zero entries are as follows: 1) the index for user id, 2) the index for item id (target

domain), and all indices for her reading articles/watching movies (source domain). It showed

better performance than other cross-domain methods like triadic (tensor) factorization [48]. It is

a shallow cross-domain model.

CMF: Collective matrix factorization [111] is a multi-relation learning approach which

jointly factorizes matrices of individual domains. Here, the relation is user-item interaction. On

Mobile, the two matrices are A = “user by app” and B = “user by news” respectively. Similarly,

they are A = “user by book” and B = “user by movie” on Amazon. The shared user factors

P enable knowledge transfer between two domains. Then CMF factorizes matrices A and B

simultaneously by sharing the user latent factors: A ≈ P TQA and B ≈ P TQB . It is a shallow

model and jointly learns on two domains. This can be thought of a non-deep transfer/multitask

learning approach for cross-domain recommendation.

CSN: The cross-stitch network method [83], described in Section 3.2.3, is a good competitor.

It is a deep multitask learning model which jointly learns two base networks. It enables knowledge

transfer via a linear combination of activation maps from two networks via a shared coefficient,

i.e., αD in Eq.(3.5). This is a deep transfer/multitask learning approach for cross-domain

recommendation.

3.4.3 Results

Comparing Different Approaches

In this section, we report the recommendation performance of different methods and discuss

the findings. Table 3.3 shows the results of different models on the two datasets under three

ranking metrics. The last two columns are the relative improvement and its paired t-test of our

model vs. the best baselines. We can see that our proposed neural models are better than the
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base network (MLP), the shallow cross-domain models (CMF and CDCF) learned using two

domains information, and the deep cross-domain model (MLP++ and CSN) on both datasets.

On Mobile, our model achieves 4.28% improvements in terms of MRR comparing with the

non-transfer MLP, showing the benefits of knowledge transfer. Note that, the way of pre-training

an MLP on source domain and then transferring user embeddings to target domain as warm-up

did not achieve much improvement. In fact, the improvement is so small that it can be ignored.

It shows the necessity of dual knowledge transfer in a deep way. Our model improves more

than 20% in terms of MRR comparing with CDCF and CMF, showing the effectiveness of deep

neural approaches. Together, our neural models consistently give better performance than other

existing methods. Within our models (SCoNet vs CoNet), enforcing sparse structure on the

task relationship matrices are useful. Note that, the dropout technique and `2 norm penalty did

not achieve these improvements. They may harm the performance in some cases. It shows the

necessity of selecting representations.

On Amazon, our model achieves 7.84% improvements in terms of NDCG comparing with the

best baselines (MLP++), showing the benefits of knowledge transfer. Compared to the BPRMF,

the inferior performance of CMF and CDCF shows the difficulty in transferring knowledge

between Amazon Books and Movies, but our models also achieve good results. Comparing

MLP++ and MLP, sharing user embedding is sightly better than the base network due to shallow

knowledge transfer. Within our models, enforcing sparse structure on the task relationship

matrices are also useful.

CSN is inferior to the proposed CoNet models on both datasets. Moreover, it is surprising that

the CSN has some difficulty in benefitting from knowledge transfer on the Amazon dataset since

it is inferior to the non-transfer base network MLP. The reason is possibly that the assumptions

of CSN are not appropriate: all representations from the auxiliary domain are equally important

and are all useful. By using a matrix H rather than a scalar αD, we can relax the first assumption.

And by enforcing a sparse structure on the matrix, we also relax the second assumption.

Note that the relative improvement of the proposed model vs. the best baseline is more

significant on the Amazon dataset than that on the Mobile dataset, though the Amazon is much

sparser than the Mobile (see Table 5.1). One explanation is that the relatedness the book and

movie domains is much larger than that between the app and news domains. This will benefit

all cross-domain methods including CMF, CDCF, and CSN, since they exploit information

from both two domains. Another possibility is that the noise from auxiliary domain proposes
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a challenge for transferring knowledge. This shows that the proposed model is more effective

since it can select useful representations from the source network and ignore the noisy ones. In

the next section, we give a closer look at the impact of the sparse structure.

Impact of Sparsity: Selecting Representations to Transfer

On two real-world datasets, it both shows the usefulness of enforcing sparse structure on the

task relationship matrices H . We now quantify the contributions of the sparsity to CoNet. We

investigate the impact of the sparsity by controlling the difference of architectures between CSN

and CoNet. That is, we let them have the same architecture configuration. As a consequence, the

performance of ablation comes from different means of knowledge transfer: scalar αD used in

CSN and sparse matrix H used in SCoNet.

Figure 3.3 and Figure 3.4 show the results on the Mobile and Amazon datasets under several

typical architectures. We can see that the sparsity contributes to performance improvements and

it is necessary to introduce the sparsity in general settings. On the Mobile data, introducing the

sparsity improves the NDCG by relatively 2.29%. On the Amazon data, introducing the sparsity

improves the NDCG by relatively 4.21%. These results show that it is beneficial to introduce the

sparsity and to select representations to transfer on both datasets.

Benefit of Transferring: Reducing Labelled Data

Transfer learning can reduce the labor and cost of labelling data instances. In this section, we

quantify the benefit of knowledge transfer by comparing with non-transfer methods. That is, we

gradually reduce the number of training examples in the target domain until the performance of

the proposed model is inferior to the non-transfer MLP model. The more training examples we

can reduce, the more benefit we can get from transferring knowledge.

Referring to Table 5.1, there are about 50 examples per user on the Mobile dataset. We

gradually reduce one and two training examples per user, respectively, to investigate the benefit of

knowledge transfer. The results are shown in Table 3.4 where the rows corresponding to reduction

percentage 0% are copied from Table 3.3 for clarity. The number 2.05% is approximately

corresponding to reducing one training example per user. The results show that we can save

the cost of labelling about 30, 000 training examples by transferring knowledge from the news

domain but still have comparable performance with the MLP model, a non-transfer baseline.

According to Table 5.1, there are about 16 examples per user on the Amazon dataset. With a
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(a) [16] ∗ 4 (b) [32] ∗ 4

(c) [64] ∗ 4 (d) [80] ∗ 4

Figure 3.3: Impact of the sparsity on the Mobile dataset.
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(a) [16] ∗ 4 (b) [32] ∗ 4

(c) [64] ∗ 4 (d) [80] ∗ 4

Figure 3.4: Impact of the sparsity on the Amazon dataset.
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Table 3.4: The performance when reducing training examples. Results with stars are inferior to
MLP.

Dataset Method
Reduction

HR NDCG MRR
percent amount

Mobile

MLP 0% 0 .8405 .6615 .6210

SCoNet
0% 0 .8547 .6802 .6431

2.05% 23,031 .8439 .6640 .6238
4.06% 45,468 .8347* .6515* .6115*

Amazon

MLP 0% 0 .5014 .3143 .3113

SCoNet
0% 0 .5338 .3424 .3351

1.11% 12,850 .5110 .3209 .3080*
2.18% 25,318 .4946* .3082* .2968*

similar setting to the Mobile dataset, the results shown in Table 3.4 indicates that we can save the

cost of labelling about 20, 000 training examples by transferring knowledge from movie domain.

Note that the Amazon dataset is extremely sparse (the density is only 0.017%), implying that

there is difficulty in acquiring many training examples. Under this scenario, our transfer models

are an effective way of alleviating the issue of data sparsity and the cost of collecting data.

3.4.4 Analyses

Sensitivity Analysis on Sparsity Penalty Term

We analyze the sensitivity to the sparse penalty which controls the sparsity (λ in Eq.(3.9)).

Results are shown on the Mobile data only due to space limit and we give the corresponding

conclusions on the Amazon data. Figure 3.5a shows the performance varying with the penalty of

sparsity enforcing on the task relationship matrices H . On the Mobile data, the performance

achieves good results at 0.1 (default) and 5.0, and it is 0.1 (default) and 1.0 on the Amazon data

(not shown).

Sensitivity Analysis on Depth of Neural Networks

Table 3.5 and Table 3.6 show the performance varying with the depth of networks where results

of MLP (the base model) are listed for reference. As we can see, stacking more layers are

generally beneficial to performance improvements indicating the effectiveness of using neural

networks for cross-domain recommendation. There is a significant improvement by using at least

one hidden layers beyond the concatenated embedding module. In other words, user and item
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Table 3.5: Performance Varying with Depth of Neural Models on Cheetah.

Depth (No. of hidden layers) Metric MLP CoNet

[64]
HR .7786 -

NDCG .5848 -
MRR .5240 -

[64→32]
HR .8433 .8441

NDCG .6648 .6739
MRR .6080 .6340

[64→32→16]
HR .8460 .8471

NDCG .6686 .6655
MRR .6121 .6224

[64→32→16→8]
HR .8405 .8480

NDCG .6615 .6754
MRR .6210 .6373

Table 3.6: Performance Varying with Depth of Neural Models on Amazon.

Depth (No. of hidden layers) Metric MLP CoNet

[64]
HR .3636 -

NDCG .2277 -
MRR .1860 -

[64→32]
HR .5030 .5248

NDCG .3114 .3280
MRR .2525 .3112

[64→32→16]
HR .5123 .5154

NDCG .3182 .3246
MRR .2893 .3107

[64→32→16→8]
HR .5014 .5167

NDCG .3143 .3261
MRR .3113 .3163

latent vectors alone are insufficient for modelling their feature interactions, and thus the necessity

of transforming them with hidden layers. With knowledge transfer, our models benefit from

deeper networks and do not saturate with four hidden layers while the base model (MLP) starts

to overfitting. We do not try deeper networks since the network configure [64→32→16→8] can

show the effectiveness of the proposed models and more deep hidden layers may face the risk of

overfitting.

Optimization Performance

We analyze the optimization performance of SCoNet varying with training epochs. (One epoch

means that the algorithm goes through the whole training dataset one time.) Results are shown
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(a) Sparse penalty (b) Loss and performance

Figure 3.5: Sensitivity and Optimization

Figure 3.6: Ratio of zero entries
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on the Mobile dataset only due to space limit and the trend on the Amazon dataset is similar.

We firstly show the training loss and test performance. Figure 3.5b shows the training loss

(averaged/normalized over all training examples) and NDCG test performance on the test set

(HR and MRR have similar trends) varying with each optimization iteration. We can see that

with more iterations, the training losses gradually decrease and the recommendation performance

is improved accordingly. The most effective updates are occurred in the first 15 iterations, and

performance gradually improves until 30 iterations. With more iterations, SCoNet is relatively

stable.

Since the sparsity of transfer matrices (H l)L1 is crucial to select representations for trans-

ferring, we show the change of zero entries over training epochs. For clarity and due to space

limit, we only show the results of the first transfer matrix H1 which connects the first and the

second hidden layers. Figure 3.6 shows the results where we use a 4-order polynomial to robustly

fit the data. We can see that the matrix becomes sparser for the first 25 iterations, and the

general trend is to sparsify. The average percent of zero entries in H1 is 6.5%. For the second

and third transfer matrices, the percentage becomes 6.0% and 6.3%, respectively. Note that,

the initial percent of zero entries of these three transfer matrices are 0.1%, 0.2%, and 0.0%,

respectively. As we can see, the zero entries of the transfer matrices have a big increase during

the optimization. In summary, sparse transfer matrices are learned and they can adaptively select

partial representations to transfer across domains. And it may be better to transfer many instead

of all representations at hand.

For the training time, our models spend about 100 seconds per epoch using one Nvidia

TITAN Xp GPU. As a reference, it is 70s for MLP and 90s for CSN, which indicates that the

training cost of the proposed method is comparable to (non-)transfer deep baselines.

3.5 Related Work

Recommender systems Recommender systems aim at learning user preferences on unknown

items from their past history. Content-based recommendations are based on the matching between

user profiles and item descriptions [98]. It is difficult to build the profile for each user when there

is no/few content. Collaborative filtering (CF) alleviates this issue by predicting user preferences

based on the user-item interaction behavior, agnostic to the content [20]. Latent factor models

learn feature vectors for users and items mainly based on matrix factorization (MF) [59] which
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has probabilistic interpretations [68, 84]. MF is also flexible to integrate text [45, 55], social

relations [47, 132], and implicit feedback [46, 59]. Factorization machines can mimic MF [104].

Some hierarchical methods can reduce to factorize a specific matrix [120]. Random walk and

heterogeneous networks are adapted for recommendation [110, 128]. Neural networks are

proposed to push the learning of feature vectors towards non-linear representations [17, 23, 42].

CF models, however, suffer from the data sparsity issue.

Cross-domain recommendation [9] is an effective technique to alleviate sparse issue. A class

of methods are based on MF applied to each domain, including collective MF (CMF) [111]

with its heterogeneous variants [94] and codebook transfer [61, 63]. Active learning [145] can

construct entity correspondence with limited budget. Heterogeneous cross-domain [134] and

multiple source domains [74] are also proposed to account for different cases of input. These

are all shallow methods and have the difficulty in learning complex (highly nonlinear) user-item

interaction relationship [17, 42, 126]. We follow this research thread by using deep networks to

learn the nonlinear interaction function.

Transfer and multitask learning Transfer learning (TL) aims at improving the performance of

the target domain by exploiting knowledge from source domains [93]. The typical TL technique

in neural networks is two-step: initialize a target network with transferred features from a pre-

trained source network [90, 140]. Different from this approach, we transfer knowledge in a deep

way such that two base networks benefit from each other during the learning procedure. Similar

to TL, the multitask learning (MTL) is to leverage useful knowledge in multiple related tasks to

help each other [10, 144]. Multi-view learning [24] is closely related to MTL. The cross-stitch

network (CSN) [83] enables information sharing between two base networks. We generalize

CSN by relaxing the underlying assumption, especially via the idea of selecting representations

to transfer.

3.6 Conclusions

We proposed a novel deep transfer learning for cross-domain recommendation. The sparse

target user-item interaction matrix can be reconstructed with the knowledge guidance from the

source domain, alleviating the data sparse issue. We demonstrated the necessity of adaptively

selecting representations from the auxiliary domain to transfer. It may harm the performance

by transferring all of them with equal importance. We found that naive deep transfer models
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may be inferior to the shallow/neural non-transfer methods in some cases. Our transfer model

can reduce tens of thousands training examples by comparing with the non-transfer methods

without performance degradation. This is useful when collecting data is difficult or costly.

Experiments demonstrate the effectiveness of the proposed models on two large real-world

datasets by comparing with shallow/deep, single/cross-domain methods. As a future work,

we will integrate content information into the collaborative cross network for alleviating the

cold-start problem.
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Chapter 4

Deep Instance-based Knowledge Transfer

in Recommendation

Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits

user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity

issue. The research thread of transferring knowledge from auxiliary sources can improve the

performance of target domain (e.g., movie recommendation) with the knowledge from the

relevant source domain (e.g., book domain), leading to transfer learning methods. In real-world

life, no single service can satisfy a user’s all information needs. Thus it motivates us to exploit

source information for RSs in this chapter. We propose a novel neural model to smoothly

enable transfer meeting neural CF network method (dubbed as TransNet) for cross-domain

recommendation in an end-to-end manner. TransNet selectively transfers knowledge from a

source domain via a transfer network. On two real-world datasets, TransNet shows better

performance in terms of three ranking metrics by comparing with various baselines. We conduct

thorough analyses to understand how the transferred knowledge help the proposed model.

4.1 Introduction

Recommender systems are widely used in various domains and e-commerce platforms, such

as to help consumers buy products at Amazon, watch videos on Youtube, and read articles on

Google News. Collaborative filtering (CF) is among the most effective approaches based on the

simple intuition that if users rated items similarly in the past then they are likely to rate items

similarly in the future. Matrix factorization (MF) techniques which can learn the latent factors

for users and items are its main cornerstone [59, 84]. Recently, neural networks like multilayer
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perceptron (MLP) are used to learn the interaction function from data [23, 42]. MF and neural

CF suffer from the data sparsity and cold-start issues.

One solution is to transfer the knowledge from relevant domains and the cross-domain

recommendation techniques address such problems [9, 61, 94]. In real life, a user typically

participates several systems to acquire different information services. For example, a user installs

applications in an app store and reads news from a website at the same time. It brings us an

opportunity to improve the recommendation performance in the target service (or all services) by

learning across domains. Following the above example, we can represent the app installation

feedback using a binary matrix where the entries indicate whether a user has installed an app.

Similarly, we use another binary matrix to indicate whether a user has read a news article.

Typically these two matrices are highly sparse, and it is beneficial to learn them simultaneously.

This idea is sharpened into the collective matrix factorization (CMF) [111] approach which

jointly factorizes these two matrices by sharing the user latent factors. It combines CF on a target

domain and another CF on an auxiliary domain, enabling knowledge transfer [93, 144]. In terms

of neural networks, given two activation maps from two tasks, cross-stitch convolutional network

(CSN) [83] and its sparse variant [43] learn linear combinations of both the input activations

and feed these combinations as input to the successive layers’ filters, and hence enabling the

knowledge transfer between two domains.

To transfer cross-domain knowledge, we propose a novel neural model, TransNet, for

cross-domain recommendation in an end-to-end manner. TransNet can can selectively transfer

knowledge across domains by a transfer network (TNet), a novel network. A shared layer of

feature interactions is stacked on the top to couple the high-level representations learned from

individual networks. On real-world datasets, TransNet shows the better performance in terms

of ranking metrics by comparing with various baselines. We conduct thorough analyses to

understand how the transferred knowledge help TransNet.

Our contributions are summarized as follows:

• The proposed TransNet transfers the source domain using an attention mechanism which

is trained in an end-to-end manner. It is the first deep model that transfers cross-domain

knowledge for recommendation using attention based neural networks.

• The transfer component can selectively transfer source items with the guidance of target

user-item interactions by the attentive weights. It is a novel transfer network for cross-

domain recommendation.
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• The proposed model can alleviate the sparsity issue including cold-user and cold-item start,

and outperforms various baselines in terms of ranking metrics on two real-world datasets.

4.2 Problem Description

4.2.1 Problem Formulation

For collaborative filtering with implicit feedback, there is a binary matrix R ∈ Rm×n to describe

user-item interactions where each entry rui ∈ {0, 1} is 1 (called observed entries) if user u has

an interaction with item i and 0 (unobserved) otherwise:

rui =

 1, if user-item interaction (u, i) exists;

0, otherwise.

Denote the set of m-sized users by U and n items by I . Usually the interaction matrix is very

sparse since a user u ∈ U only consumed a very small subset of all items. Similarly for the task

of item recommendation, each user is only interested in identifying top-K items. The items are

ranked by their predicted scores:

r̂ui = f(u, i|Θ), (4.1)

where f is the interaction function and Θ denotes model parameters.

For MF-based CF approaches, the interaction function f is fixed and computed by a dot prod-

uct between the user and item vectors. For neural CF, neural networks are used to parameterize

function f and learn it from interaction data (see Section 4.2.2):

f(xui|P ,Q, θf ) = φo(...(φ1(xui))...), (4.2)

where input xui = [P Txu,Q
Txi] ∈ R2d is concatenated from that of user and item embeddings,

which are projections of their one-hot encodings xu ∈ {0, 1}m and xi ∈ {0, 1}n by embedding

matrices P ∈ Rm×d and Q ∈ Rn×d, respectively. The output and hidden layers are computed by

φo and {φl} in a neural network.

Similarly, for cross-domain recommendation, we have a target domain (e.g., news domain)

user-item interaction matrix RT ∈ Rm×nT and a source domain (e.g., app domain) matrix

RS ∈ Rm×nS where m = |U| and nT = |IT | (nS = |IS|) is the size of users U and target items

IT (source items IS). Note that the users are shared and hence we can transfer knowledge across

domains. We use u to index users, i to target items, and j to source items. Let [j]u = (j1, j2, ..., js)
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be the s-sized source items that user u has interacted with in the source domain. Neural CF can

be extended to leverage the source domain and then the interaction function has the form of (see

Section 4.3.1):

f(u, i, [j]u|Θ). (4.3)

For the task of item recommendation, the goal is to generate a ranked list of items for

each user based on her history records, i.e., top-N recommendations. We hope improve the

recommendation performance in the target domain with the help of both the content and source

domain information.

A synthetic model of transfer and hybrid estimates the probability of his/her each observation

conditioned on this user, the content text, and the interacted source items:

r̂ui , p(rui = 1|u, dui, [j]u). (4.4)

The equation sharpens the intuition behind the synthetic model, that is, the conditional probability

of whether user u will like the item i can be determined by three factors: his/her individual

preferences, and his/her behavior in a related source domain ([j]u). The likelihood function of

the entire matrix RT is then defined as:

p(RT ) =
∏
u

∏
i

p(rui|u, [j]u). (4.5)

We propose a novel neural model to learn the conditional probability in an end-to-end

manner:

r̂ui = f(u, i, [j]u|Θf ), (4.6)

where f is the network function and Θf are model parameters.

The model consists of a transfer network cui = fT (i, [j]u|ΘT ) to transfer knowledge from

the source domain. A shared feature interaction layer fS(zui, cui|ΘS) where zui is the non-

linear representations of the (u, i) interaction, is stacked on the top of the learned high-level

representations from individual networks.

4.2.2 A Basic Neural CF Network

We adopt a feedforward neural network (FFNN) as the base neural CF model to parameterize the

interaction function (see Eq. (4.2)). The basic network is similar to the Deep model in [15, 17]

and the MLP model in [42]. The base network consists of four modules with the information

flow from the input (u, i) to the output r̂ui as follows.
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Table 4.1: Model Parameters of TransNet.

Parameter Dimension Description

P m× d User embedding matrix
Q nT × d Target item embedding matrix
H nS × d Source item embedding matrix
A L× 2d Internal memory matrix
C L× 2d External memory matrix

W , b 2d× d, d
Linear mapping weight and bias

for the user-item interaction

Wz,Wc d× d Linear mapping for outputs
of individual networks

h 2d Weight of the shared layer

Input: (u, i)→ 1u,1i

This module encodes user-item interaction indices. We adopt the one-hot encoding. It takes user

u and item i, and maps them into one-hot encodings 1u ∈ {0, 1}m and 1i ∈ {0, 1}n where only

the element corresponding to that index is 1 and all others are 0.

Embedding: 1u,1i → xui

This module firstly embeds one-hot encodings into continuous representations xu = P T
1u

and xi = QT
1i by embedding matrices P and Q respectively, and then concatenates them as

xui = [xu,xi], to be the input of following building blocks.

Hidden layers: xui  zui

This module takes the continuous representations from the embedding module and then trans-

forms through several layers to a final latent representation zui = (...(φ1(xui)...). This module

consists of hidden layers to learn nonlinear interaction between users and items.

Output: zui → r̂ui

This module predicts the score r̂ui for the given user-item pair based on the representation zui

from the last layer of multi-hop module. Since we focus on one-class collaborative filtering, the

output is the probability that the input pair is a positive interaction. This can be achieved by a

softmax layer: r̂ui = φo(zui) = 1
1+exp(−hT zui) , where h is the parameter.
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4.3 Methodology

We describe the proposed TransNet model in this section. TransNet models user preferences

in the target domain by transferring knowledge from a source/auxiliary domain. TransNet

learns high-level representations for source domain items such that the learned representations

can estimate the conditional probability of that whether a user will like an item. This is done

with a transfer network (Sec. 4.3.1), coupled by the shared embeddings on the bottom and an

interaction layer on the top of it. The entire network can be trained efficiently to minimize a

binary cross-entropy loss by back-propagation. We begin by describing the recommendation

problem and the model formulation before introducing the network architecture.

4.3.1 TransNet

Selecting Source Items to Transfer

We introduce a transfer component to exploit the source domain knowledge. A user may

participate several systems to acquire different information needs, for example, a user installs

apps in an app store and reads news from other website. Cross-domain recommendation [9]

is an effective technique to alleviate sparse issue where transfer learning (including multitask

learning) [10, 93, 144] is a class of underlying methods. Typical methods include collective

matrix factorization (CMF) [111] approach which jointly factorizes two rating matrices by sharing

the user latent factors and hence it enables knowledge transfer. The cross-stitch network [83]

and its sparse variant [43] enable information sharing between two base networks for each

domain in a deep way. These methods treat knowledge transfer as a global process (shared global

parameters) and do not match source items with the specific target item given a user.

We propose a novel transfer network (TNet) which can selectively transfer source knowledge

for specific target item. Since the relationships between items are shown to be important in

improving recommendation performance [58, 86, 88, 97] for single domain, we want to capture

relationships between target item and source items of a user. The central idea is to learn adaptive

weights over source items specific to the given target item during the knowledge transfer.

Given the source items [j]u = (j1, j2, ..., js) with which the user u has interacted in the

source domain, TNet learns a transfer vector cui ∈ Rd to capture the relations between the target

item i and source items given the user u. The underlying observations can be illustrated in an

example of improving the movie recommendation by transferring knowledge from the book
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domain. When we predict the preference of a user on the movie “The Lord of the Rings,” the

importance of her read books such as “The Hobbit,” and “The Silmarillion” may be much higher

than those such as “Call Me by Your Name”.

The similarities between target item i and source items can be computed by their dot products:

a
(i)
j = xTi xj, j = 1, ..., s, (4.7)

where xj ∈ Rd is the embedding for the source item j by an embedding matrix H ∈ RnS×d.

This score computes the compatibility between the target item and the source items consumed

by the user. For example, the similarity of target movie i = “The Lord of the Rings,” with the

source book j = “The Hobbit” may be larger than that with the source book j′ = “Call Me by

Your Name” (given a user u).

We normalize similarity scores to be a probability distribution over source items:

α
(i)
j = softmax(a(i)

j ), (4.8)

and then the transfer vector is a weighted sum of the corresponding source item embeddings:

cui = ReLU
(∑

j

α
(i)
j xj

)
, (4.9)

where we introduce non-linearity on the transfer vector by activation function rectified linear

unit (ReLU). Empirically we found that the activation function ReLU(x) = max(0, x) works

well due to its non-saturating nature and suitability for sparse data. The transfer vector cui is a

high-level representation, summarizing the knowledge from the source domain as the output of

the TNet. TNet can selectively transfer representations from the corresponding embeddings of

source items with the guidance of the target user-item interaction.

A more detailed discussion on Eq. (4.9) is in order. Eq. (4.9) sharpens the idea that the

transfer component can selectively transfer source items with the guidance of target user-item

interactions. This is achieved by attentive weights α(i)
j (or a(i)

j ). When the source item j is highly

relevant to the target item i given user u, then the knowledge from the source domain is easily

flowing into the target domain with a high influence weight. When the source item j is irrelevant

to the target item i given user u, then the knowledge from source domain is hard to flow into

the target domain with a small effect weight. This selection is automatically determined by the

transfer component, but this is not easily achieved by the existing cross-domain recommendation

techniques like the multitask models such as collective matrix factorization [111] and collabo-

rative cross networks [43] (a variant of cross-stitch networks [83]) which have multi-objective
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Figure 4.1: Architecture of the Proposed TransNet Model. The instance transfer component
(rendered in green color) infers a variable-length transfer weight vector α = [α1, ..., αs] based
on the current target item i and source items [j]u = [j1, ..., js]. A transfer vector cui is then
computed as the weighted average, according to the weight vector α, over the source items.

optimization. Besides, we implicitly use the label information from the source domain when

generating the source items for a user, while CMF and CSN explicitly exploit label information

by learning to predict the labels. As a result, the transfer component benefits from the source

domain knowledge in two-step: selecting instances (source items) to transfer via source domain

labels and re-weighting instances with attentive weights.

Put Them Together

The architecture for the proposed TransNet model is illustrated in Figure 4.1 as a feedforward

neural network (FFNN). The input layer specifies embeddings of a user u, a target item i, and the

corresponding source items [j]u = [j1, ..., js]. The content text dui is modelled by the memories

in the MNet to produce a high-level representation oui. The source items are transferred into the

transfer vector cui with the guidance of (u, i) in the TNet.

Firstly, we use a simple neural CF model (CFNet) which has one hidden layer to learn a

nonlinear representation for the user-item interaction:

zui = ReLU(Wxui + b), (4.10)

where W and b are the weight and bias parameters in the hidden layer. Usually the dimension

of zui is half of that xui in a typical tower-pattern architecture.
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The outputs from the three individual networks can be viewed high-level features of the

source domain knowledge and the user-item interaction. They come from different feature space

learned by different networks. Thus, we use a shared layer on the top of the all features:

r̂ui = 1
1 + exp(−hTyui)

, (4.11)

where h is the parameter. And the joint representation:

yui = [Wzzui,Wccui], (4.12)

is concatenated from the linear mapped outputs of individual networks where matrices Wz,Wc

are the corresponding linear mapping transformations..

4.3.2 Objective and Optimization

Due to the nature of the implicit feedback and the task of item recommendation, the squared loss

(r̂ui − rui)2 may be not suitable since it is usually for rating prediction. Instead, we adopt the

binary cross-entropy loss:

L = −
∑

(u,i)∈S
rui log r̂ui + (1− rui) log(1− r̂ui), (4.13)

where the training samples S = R+
T ∪R−T are the union of observed target interaction matrix and

randomly sampled negative pairs. Usually, |R+
T | = |R−T | and we do not perform a predefined

negative sampling in advance since this can only generate a fixed training set of negative samples.

Instead, we generate negative samples during each epoch, enabling diverse and augmented

training sets of negative examples to be used.

This objective function has a probabilistic interpretation and is the negative logarithm

likelihood of the following likelihood function:

L(Θ|S) =
∏

(u,i)∈R+
T

r̂ui
∏

(u,i)∈R−
T

(1− r̂ui), (4.14)

where the model parameters are: Θ = {P ,Q,H ,A,C,W , b,Wz,Wc,h}. Comparing with

Eq. (5.3), instead of modeling all zero entries (i.e., the whole target matrix RT ), we learn from

only a small subset of such unobserved entries and treat them as negative samples by picking

them randomly during each optimization iteration (i.e., the negative sampling technique). The

objective function can be optimized by stochastic gradient descent (SGD) and its variants like

adaptive moment method (Adam) [56]. The update equations are:

Θnew ← Θold − η∂L(Θ)
∂Θ , (4.15)
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where η is the learning rate. Typical deep learning library like TensorFlow 1 provides automatic

differentiation and hence we omit the gradient equations ∂L(Θ)
∂Θ which can be computed by chain

rule in back-propagation (BP).

4.3.3 Complexity Analysis

In the model parameters Θ, the embedding matrices P , Q and H contain a large number of

parameters since they depend on the input size of users and (target and source) items, and their

scale is hundreds of thousands. Since the architecture follows a tower pattern, the dimension

of the outputs of the individual networks is also limited within hundreds. In total, the size of

model parameters is linear with the input size and is close to the size of typical latent factors

models [111] and one hidden layer neural CF approaches [42].

During training, we compute the outputs of the three individual networks in parallel us-

ing mini-batch stochastic optimization which can be trained efficiently by back-propagation.

TransNet is scalable to the number of the training data. It can easily update when new data

examples come, just feeding them into the training mini-batch. Thus, TransNet can handle the

scalability and dynamics of items and users like in an online fashion. In contrast, the topic

modeling related techniques have difficulty in benefitting from these advantages to this extent.

4.4 Experiments

In this section, we conduct empirical study to answer the following questions: 1) how does

the proposed TransNet model perform compared with state-of-the-art recommender systems;

and 2) how do the source domain information contribute each to the proposed framework.

We firstly introduce the evaluation protocols and experimental settings, and then we compare

the performance of different recommender systems. We further analyze the TransNet model

to understand the impact of the transfer component. We also investigate that the improved

performance comes from the cold-users and cold-items to some extent.
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Table 4.2: Datasets and Statistics.

Dataset Domain Statistics Amount

Mobile News

Shared #Users 15,890

Target
#News 84,802
#Reads 477,685
Density 0.035%

Source
#Apps 14,340

#Installations 817,120
Density 0.359%

Amazon Product

Shared #Users 8,514

Target
#Clothes (Men) 28,262

#Ratings/ #Reviews 56,050
Density 0.023%

Source
#Products (Sports) 41,317

#Ratings/ #Reviews 81,924
Density 0.023%

4.4.1 Data Sets and Evaluation Protocol

Data Sets

We evaluate on two real-world cross-domain datasets. The first dataset, Mobile2 , is provided

by a large internet company, i.e., Cheetah Mobile 3 [69]. The information contains logs of user

reading news, the history of app installation, and some metadata such as news publisher and

user gender collected in one month in the US. We removed users with fewer than 10 feedbacks.

The dataset we used contains 477K user-news reading records and 817K user-app installations.

There are 15.8K shared users which enable the knowledge transfer between the two domains.

We aim to improve the news recommendation by transferring knowledge from app domain. The

data sparsity is over 99.6%.

The second dataset is a public Amazon dataset4 , which has been widely used to evaluate the

performance of collaborative filtering approaches [41]. We use the two categories of Amazon

Men and Amazon Sports as the cross-domain [41, 45]. The original ratings are from 1 to 5 where

five stars indicate that the user shows a positive preference on the item while the one stars are not.

We convert the ratings of 4-5 as positive samples. The dataset we used contains 56K positive

ratings on Amazon Men and 81K positive ratings on Amazon Sports. There are 8.5K shared

1https://www.tensorflow.org
2An anonymous version can be released later.
3http://www.cmcm.com/en-us/
4http://snap.stanford.edu/data/web-Amazon.html
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users, 28K Men products, and 41K Sports goods. We aim to improve the recommendation on the

Men domain by transferring knowledge from relevant Sports domain. The data sparsity is over

99.7%.

The statistics of the two datasets are summarized in Table 6.1. As we can see, both datasets

are very sparse and hence we hope improve performance by transferring knowledge from the

auxiliary domain as well.

Evaluation Protocol

For item recommendation task, the leave-one-out (LOO) evaluation is widely used and we

follow the protocol in [42]. That is, we reserve one interaction as the test item for each

user. We determine hyper-parameters by randomly sampling another interaction per user as

the validation/development set. We follow the common strategy which randomly samples 99

(negative) items that are not interacted by the user and then evaluate how well the recommender

can rank the test item against these negative ones. Since we aim at top-K item recommendation,

the typical evaluation metrics are hit ratio (HR), normalized discounted cumulative gain (NDCG),

and mean reciprocal rank (MRR), where the ranked list is cut off at topK = {5, 10, 20}. HR

intuitively measures whether the reserved test item is present on the top-K list, defined as:

HR = 1
|U|

∑
u∈U

δ(pu ≤ topK), (4.16)

where pu is the hit position for the test item of user u, and δ(·) is the indicator function. NDCG

and MRR also account for the rank of the hit position, respectively defined as:

NDCG = 1
|U|

∑
u∈U

log 2
log(pu + 1) , (4.17)

and

MRR = 1
|U|

∑
u∈U

1
pu
. (4.18)

A higher value with lower cutoff indicates better performance.

Implementation

For BPRMF, we use LightFM’s implementation5 which is a popular CF library. For CDCF, we

adapt the official libFM implementation6 . For CMF, we use a Python version reference to the

5https://github.com/lyst/lightfm
6http://www.libfm.org
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Baselines Shallow method Deep method

Single-Domain BPRMF [105] MLP [42]
Cross-Domain CDCF [71], CMF [111] MLP++, CSN [83], TransNet (ours)

Table 4.3: Categorization of Baselines

original Matlab code7 . For latent factor models, we vary the number of factors from 10 to 100

with step size 10. For MLP, we use the code released by its authors8 . The MLP++ and CSN are

implemented based on MLP. Our methods are implemented using TensorFlow. Parameters are

randomly initialized from GaussianN (0, 0.012). The optimizer is Adam with initial learning rate

0.001. The size of mini batch is 128. The ratio of negative sampling is 1. The MLP and MLP++

follows a tower pattern, halving the layer size for each successive higher layer. Specifically, the

configuration of hidden layers in the base MLP network is [64→ 32→ 16→ 8] as reference in

the original paper [42]. For CSN, it requires that the number of neurons in each hidden layer

is the same and the configuration is [64] ∗ 4 (equals [64 → 64 → 64 → 64]). We investigate

several typical configurations {16, 32, 64, 80} ∗ 4 . The dimension of embeddings is d = 75.

4.4.2 Baselines

We compare with various baselines, categorized as single/cross domain, shallow/deep, and hybrid

methods.

• BPRMF, Bayesian personalized ranking [105], is a latent factor model based on matrix

factorization and pair-wise loss. It learns on the target domain only.

• HFT, Hidden Factors and hidden Topics [79], adopts topic distributions to learn latent

factors from text reviews. It is a hybrid method.

• CDCF, Cross-domain CF with factorization machines (FM) [71], is a cross-domain

recommender which extends FM [104]. It is a context-aware approach which applies

factorization on the merged domains (aligned by the shared users). That is, the auxiliary

domain is used as context. On the Mobile dataset, the context for a user in the target news

domain is his/her history of app installations in the source app domain. The feature vector

for the input is a sparse vector x ∈ Rm+nT +nS where the non-zero entries are as follows:

7http://www.cs.cmu.edu/~ajit/cmf/
8https://github.com/hexiangnan/neural_collaborative_filtering
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1) the index for user id, 2) the index for target news id (target domain), and all indices for

his/her installed apps (source domain).

• CMF, Collective matrix factorization [111], is a multi-relation learning approach which

jointly factorizes matrices of individual domains. Here, the relation is the user-item

interaction. On Mobile, the two matrices are A = “user by news” and B = “user by

app” respectively. The shared user factors P enable knowledge transfer between two

domains. Then CMF factorizes matrices A and B simultaneously by sharing the user

latent factors: A ≈ P TQA and B ≈ P TQB. It is a shallow model and jointly learns on

two domains. CMF is a multi-objective shallow model for cross-domain recommendation.

This can be thought of a non-deep transfer/multitask learning approach for cross-domain

recommendation.

• MLP, multilayer perceptron [42], is a neural CF approach which learns the nonlinear

interaction function using neural networks. It is a deep model learning on the target domain

only.

• MLP++: We combine two MLPs by sharing the user embedding matrix, enabling the

knowledge transfer between two domains through the shared users. It is a naive knowledge

transfer approach applied for cross-domain recommendation.

• CSN, Cross-stitch network [83], is a deep multitask learning model originally proposed

for visual recognition tasks. We use the cross-stitch units to stitch two MLP networks.

It learns a linear combination of activation maps from two networks and hence benefits

from each other. Comparing with MLP++, CSN enables knowledge transfer also in the

hidden layers besides the lower embedding matrices. CSN optimizes a multi-objective

problem for cross-domain recommendation. This is a deep transfer learning approach for

cross-domain recommendation.

4.4.3 Results

In this section, we report the recommendation performance of different methods and discuss the

findings. The comparison results are shown in Table 4.5 and Table 4.4 respectively on the Mobile

and Amazon datasets where the last row is the relative improvement of ours vs the best baseline.

We have the following observations. Firstly, we can see that our proposed neural models are
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Table 4.4: Results on Amazon data. The last row is the relative improvement of TransNet over
the best baseline.

Method HR@5 NDCG@5 HR@10 NDCG@10

BPRMF .0810 .0583 .1204 .0710
MLP .2100 .1486 .2836 .1697

CDCF .1295 .0920 .2070 .1167
CMF .1498 .0950 .2224 .1182

MLP++ .2263 .1626 .2992 .1862
CSN .2340* .1680** .3018* .1898*

TransNet .2455 .1703 .3293 .1974

Improvement 4.91% 1.37% 9.11% 4.00%

Table 4.5: Results on Mobile data. The last row is the relative improvement of TransNet over the
best baseline.

Method HR@5 NDCG@5 HR@10 NDCG@10

BPRMF .4380 .3971 .4941 .4182
MLP .5380 .4121 .6176 .4381

CMF .4789 .3535 .5846 .3879
CDCF .5066 .3734 .5325 .4089

MLP++ .5524 .4284 .6319 .4535
CSN .5551* .4323* * .6327* .4574*

TransNet .5616 .4382 .6408 .4629

Improvement 1.17% 1.36% 1.28% 1.20%

better than all baselines on the two datasets at each setting, including the base MLP network,

shallow cross-domain models (CMF and CDCF), and deep cross-domain models (MLP++ and

CSN). These results demonstrate the effectiveness of the proposed neural model.

On the Mobile dataset, the differences between TransNet and other methods are more

pronounced for small numbers of recommended items including top-5 or top-10 where we

achieve average 1.25% relative improvements over the best baseline. This is a desirable feature

since we often recommend only a small number of top ranked items to consumers to alleviate

the information overload issue.

Note that the relative improvement of the proposed model vs. the best baseline is more

significant on the Amazon dataset than that on the Mobile dataset, obtaining average 4.85%

relative improvements over the best CSN baseline, though the Amazon is sparser than the Mobile

(see Table 6.1). We show the benefit of combining text content by comparing with CSN. One
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explanation is that the relatedness of the Men and Sports domains is closer than that between

the news and app domains. This will benefit all cross-domain methods including CMF, CDCF,

MLP++, and CSN, since they exploit information from both two domains.

There is a possibility that the noise from auxiliary domain proposes a challenge for ex-

ploiting them. This shows that the proposed model is more effective since it can select useful

representations from the source network.

In summary, the empirical comparison results demonstrate the superiority of the proposed

neural model to exploit the text content and source domain knowledge for recommendation.

Improvements of Transfer Learning on Different Datasets

It is noted that the benefit of transfer learning on the Amazon dataset is higher than that on the

Cheetah Mobile dataset where the former has a relative 4.8% improvement while the latter has a

relative 1.3% improvement. One possible reason that the scenario on the Amazon dataset is a

cross-domain recommendation case while the scenario on the Cheetah Mobile is a cross-dataset

recommendation case. Intuitively, the relatedness between the source and target domains is

closer in the former case (i.e., from the Sports category to the Clothes category) than that in

the latter case (i.e., from the Apps installation to the News reading). A theory using distance

between distributions is proposed in the domain adapation setting [6].

4.4.4 Analyses

Improvement on Cold Users and Items

The cold-user and cold-item problems are common issues in recommender systems. When new

users enter into a system, they have no history that can be exploited by the recommender system

to learn their preferences, leading to the cold-user start problem. Similarly, when latest news

are released on the Google News, there are no reading records that can be exploited by the

recommender system to learn users’ preferences on them, leading to the cold-item start problem.

In general, it is very hard to train a reliable recommender system and make predictions for users

and items that have few interactions. Intuitively, the proposed model can alleviate both the

cold-user and cold-item start issues. TransNet alleviates the cold-user start issue in the target

domain by transferring his/her history from the related source domain. TransNet alleviates the

cold-item start issue by exploiting the associated text content to reveal its properties, semantics,
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and topics. We now investigate that TransNet indeed improves the performance over the cold

users and items by comparing with the pure neural collaborative filtering method, MLP.

We analyse the distribution of missed hit users (MHUs) of TransNet and MLP (at cutoff 10).

We expect that the cold users in MHUs of MLP can be reduced by using the TransNet model.

The more amount we can reduce, the more effective that TransNet can alleviate the cold-user

start issues. The results are shown in Figure 4.2 where the number of training examples can

measure the “coldness” of a user. Naturally, the MHUs are most of the cold users who have few

training examples. As we can see, the number of cold users in MHUs of MLP is higher than

that of TransNet. If the cold users are defined as those with less than seven training examples,

then TransNet reduces the number of cold users from 4,218 to 3,746 on the Amazon dataset,

achieving relative 12.1% reduction. On the Mobile dataset, if the cold users are those with less

than ten training examples (Mobile is denser than Amazon), then TransNet reduces the number

of cold users from 1,385 to 1,145 on the Mobile dataset, achieving relative 20.9% reduction.

These results show that the proposed model is effective in alleviating the cold-user start issue.

The results on cold items are similar and we omit them due to the page limit.

4.5 Related Work

Collaborative filtering Recommender systems aim at learning user preferences on unknown

items from their past history. Content-based recommendations are based on the matching

between user profiles and item descriptions. It is difficult to build the profile for each user

when there is no/few content. Collaborative filtering (CF) alleviates this issue by predicting user

preferences based on the user-item interaction behavior, agnostic to the content [20]. Latent

factor models learn feature vectors for users and items mainly based on matrix factorization

(MF) [59] which has probabilistic interpretations [84]. Factorization machines (FM) can mimic

MF [104]. To address the data sparsity, an item-item matrix (SPPM) is constructed from the

user-item interaction matrix in the CoFactor model [67]. It then simultaneously factorizes the

interaction matrix and the SPPMI matrix in a shared item latent space, enabling the usage of

co-click information to regularize the learning of user-item matrix. In contrast with our method,

We use independent unstructured text and source domain information to alleviate the data sparsity

issue in the user-item matrix.

Neural networks are proposed to push the learning of feature vectors towards non-linear
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Figure 4.2: The Missed Hit Users Distribution (not normalized) Over the Number of Training
Examples on the Amazon (Top) Datasets and on the Mobile (Bottom).
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representations, including the neural network matrix factorization (NNMF) and multilayer

perceptron (MLP) [23, 42]. The basic MLP architecture is extended to regularize the factors of

users and items by social and geographical information [132]. Other neural approaches learn

from the explicit feedback for rating prediction task [11, 147]. We focus on learning from the

implicit feedback for top-N recommendation [127]. CF models, however, suffer from the data

sparsity issue.

Cross-domain recommendation Cross-domain recommendation [9] is an effective technique

to alleviate sparse issue. A class of methods are based on MF applied to each domain. Typical

methods include collective matrix factorization (CMF) [111] approach which jointly factorizes

two rating matrices by sharing the user latent factors and hence it enables knowledge transfer.

CMF has its heterogeneous [94] variants, and codebook transfer [61]. The coordinate system

transfer can exploit heterogeneous feedbacks [95, 134]. Multiple source domains [74] and multi-

view learning [24] are also proposed for integrating information from several domains. Transfer

learning (TL) aims at improving the performance of the target domain by exploiting knowledge

from source domains [93]. Similar to TL, the multitask learning (MTL) is to leverage useful

knowledge in multiple related tasks to help each other [10, 144]. The cross-stitch network [83]

and its sparse variant [43] enable information sharing between two base networks for each

domain in a deep way. Robust learning is also considered during knowledge transfer [40]. These

methods treat knowledge transfer as a global process with shared global parameters and do not

match source items with the specific target item given a user. We follow this research thread by

using neural networks to selectively transfer knowledge from the source items. We introduce a

transfer component to exploit the source domain knowledge.

4.6 Conclusions

It is shown that the source domain knowledge can help improve recommendation performance and

can be effectively integrated under a neural architecture. The sparse target user-item interaction

matrix can be reconstructed with the knowledge guidance from the source information, alleviating

the data sparse issue. We proposed a novel deep neural model, TransNet, for cross-domain

recommendation. TransNet smoothly enables transfer meeting neural CF. TransNet consists

of a transfer component which can selectively transfer useful source items to benefit the target

domain. These are achieved by the attentive weights learned automatically. TransNet shows
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better performance than various baselines on two real-world datasets under different settings.

The results demonstrate that our combine model outperforms the baseline that relies only on the

transfer networks (CSN [83]). We quantify the amount of missed hit cold users (and items) that

TransNet can reduce by comparing with the pure CF method, showing that TransNet is able to

alleviate the cold-start issue.

In real world services, data sources may belong to different providers (e.g. product reviews

provided by Amazon while social relations provided by Facebook). The data privacy is a big

issue when we combine the multiple data sources. In future work, it is worth developing new

learning techniques to learn a combined model while protecting user privacy.
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Chapter 5

Deep Feature-based Knowledge Transfer

in Heterogeneous User-Interest News

Recommendation

We investigate how to solve the cross-corpus news recommendation for unseen users in future

inference tasks where those users are not seen during the training. This is a problem where

traditional content-based recommendation techniques often fail. Luckily, in real-world recom-

mendation services, some publisher (e.g., Daily news) may have accumulated a large corpus with

lots of consumers which can be used for a newly deployed publisher (e.g., Political news). To

take advantage of the existing corpus, we propose a transfer learning model (dubbed as TrNews)

for news recommendation to transfer the knowledge from a source corpus to a target corpus.

To tackle the heterogeneity of different user interests and of different word distributions across

corpora, we design a translator-based transfer-learning strategy to learn a representation mapping

between source and target corpora. The learned translator can be used to generate representations

for unseen users in the future. We show through experiments on real-world datasets that TrNews

is better than various baselines in terms of four metrics. We also show that our translator is

effective among existing transfer strategies.

5.1 Introduction

News recommendation is key to satisfying users’ information need for online services. Some

news articles, such as breaking news, are manually selected by publishers and displayed for

all users. A huge number of news articles generated everyday make it impossible for editors
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and users to read through all of them, raising the issue of information overload. Online news

platforms provide a service of personalized news recommendation by learning from the past

reading history of users, e.g., Google [18, 70], Yahoo [89, 114], and Bing news [73, 117].

When a new user uses the system (cold-start users) or a new article is just created (cold-start

items), there are too few observations for them to train a reliable recommender system. Content-

based techniques exploit the content information of news (e.g., words and tags) and hence new

articles can be recommended to existing users [98]. Content-based recommendation, however,

suffers from the issue of data sparsity since there is no reading history for them to be used to

build a profile [96].

Transfer learning is a common technique for alleviating the issues of data sparsity [9, 69, 95].

A user may have access to many websites such as Twitter.com and Youtube.com [52, 108], and

consume different categories of products such as movies and books [61]. In this case, transfer

learning approaches can recommend articles to a new user in the target domain by exploiting

knowledge from the relevant source domains for this new user.

A technical challenge for transfer learning approaches is that user interests are quite different

across domains (corpora). For example, users do not use Twitter for the same purpose. A

user may follow up on news about “Donald Trump” because she supports republican party (in

the political news domain), while she may follow up account @taylorswift13 (“Taylor Swift”)

because she loves music (in the entertainment news domain). Another challenge is that the

word distribution and feature space are different across domains. For example, vocabularies are

different for describing political news and entertainment news. An illustration is depicted in

Figure 5.1. As a result, the user profile computed from her news history is heterogeneous across

domains.

Several strategies have been proposed for heterogeneous transfer learning [136]. The transfer-

able contextual bandit (TCB) [69] learns a translation matrix to translate target feature examples

to the source feature space. This linear mapping strategy is also used in collaborative cross net-

works (CoNet) [43] and deep dual transfer cross domain recommendation (DDTCDR) [65]. To

capture complex relations between source and target domains, some nonlinear mapping strategy

is considered in the embedding and mapping cross-domain recommendation (EMCDR) [77]

which learns a supervised regression between source and target factors using a multilayer percep-

tron (MLP). Since aligned examples between source and target domains are limited, they may

face the overfitting issues.

75



Figure 5.1: Word clouds of two news corpora. Top: Cheetah Mobile data. Bottom: MIND data.
Left and right parts represent different domains (categories).

To tackle challenges of heterogeneous user interests and limited aligned data between

domains, we propose a novel transfer learning model (TrNews) for cross-corpora news rec-

ommendation. TrNews builds a bridge between two base networks (one for each corpus, see

Section 5.2) through the proposed translator-based transfer strategy. The translator in TrNews

captures the relations between source and target domains by learning a nonlinear mapping

between them (Section 5.3.1). The heterogeneity is alleviated by translating user interests across

corpora. TrNews uses the translator to transfer knowledge between source and target networks.

TrNews alleviates the limited data in a way of alternating training. The learned translator is used

to infer the representations of unseen users in the future (Section 5.3.3). By “translating” the

source representation of a user to the target domain, TrNews offers an easy solution to create

unseen users’ target representations. TrNews outperforms the state-of-the-art recommendation

methods on four real-world datasets in terms of four metrics (Section 5.4.2), while having an

explanation advantage by allowing the visualization of the importance of each news article in the

history to the future news.
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5.2 Problem Description

5.2.1 Problem Formulation

Objective Function

For content-based collaborative filtering, firstly there is a binary matrix R ∈ Rm×n to describe

user-item interactions where each entry rui ∈ {0, 1} is 1 if user u has an interaction with item

i and 0 otherwise where m and n are the size of users and items respectively. Secondly, in

news recommendation, or content-based recommendation, the items have affiliated content

information including the news title and news abstract. Denote the content of news item i by

di = [wk]ni
j=1 where ni is the length of word sequence in it andwk is the k-th word in the sequence.

Content-based collaborative filtering leverages both interaction and content information leading

to the interaction function has the form of:

fCBF (u, i, di|Θ). (5.1)

A synthetic model of interaction and content estimates the probability of his/her preferences

conditioned on this user, this item, and the content text:

r̂ui , p(rui = 1|u, i, di). (5.2)

The likelihood function of the entire matrix RT is then defined as:

p(R) =
∏
u

∏
i

∏
k∈di

p(rui|u, i, di). (5.3)

In cross-domain news recommendation, we have a target domain (e.g., news domain) user-

item interaction matrix RT ∈ Rm×nT and a source domain (e.g., app domain) matrix RS ∈

Rm×nS where m = |U| and nT = |IT | (nS = |IS|) is the size of users U and target items IT
(source items IS). We use u to index users, i to target items, and j to source items. Content-based

Neural CF can be extended to leverage the source domain leading to the interaction function has

the form of:

learning target function ftgt(u, i, di|Θtgt),

with the knowledge from the source fsrc(u, j, dj|Θsrc),
(5.4)

where both ftgt and fsrc are a content-based neural CF model. And the parameters of the target

and source models are bridged by the shared users across domains and the shared words across

corpora.

77



Evaluation Method

For the task of item recommendation, each user is only interested in identifying top-K items.

Note that, we care about the performance in the target domain. As a result, the users and items

during the test are related to the target domain only. The knowledge learned from the source

domain during the training phase will be exploited in the test of target domain. The items are

ranked by their predicted scores:

r̂ui = f(u, i, di|Θ), (5.5)

where f is the interaction function and Θ denotes model parameters. The goal is to generate

a ranked list of items for each user based on her history records, i.e., top-N recommendations.

The evaluation metrics are usually AUC, Hit Ratio, NDCG, and MRR. We hope improve the

recommendation performance in the target domain with the help of both the content and source

domain information.

5.2.2 A Content-based Neural CF Base Model

There is a base network for each of the two domains. We introduce such a base network with a

content-based neural CF model in the following. It is an attentional network which has three

modules (ψ, φ, f): the news encoder ψ to learn news representations, the user encoder φ to learn

user representations, and a neural collaborative filtering module f to learn user preferences from

reading behaviors.

News encoder

The news encoder module is to learn news representation from its content. The news encoder

takes a news article c’s word sequence dc = [wj]nc
j=1 (nc is length of c) as the input, and outputs

its representation ψ(c) , ψ(dc) ∈ RD where D is the dimensionality. We compute the average

of c’s word embeddings by:

ψ(dc) = 1
|dc|

∑
w∈dc

ew, (5.6)

where ew is the embedding of w.

User encoder

The user encoder module is to learn the user representation from their reading history. The user

encoder takes a user’s reading history [ψ(d(u)
i )]nu

i=1 (nu is length of u’s history) as input, and

78



outputs her representation φ(u) , φ([ψ(d(u)
i )]nu

i=1) ∈ RD where D is dimensionality.

In detail, given a pair of user and candidate news (u, c), we get the user representation φ(u|c)

as the weighted sum of her historical news articles’ representations:

φ(u|c) =
nuc∑
i=1

α
(uc)
i ψ(d(u)

i ). (5.7)

The weights α(uc)
i ’s are computed via attention units by: α(uc)

i = a([ψ(d(u)
i ), ψ(dc)]) where a

is the attention function with parameters to be learned. We use an MLP to compute it. For a

specific candidate news c, we limit the history news to only those articles that are read before it.

For notational simplicity, we do not explicitly specify the candidate news when referring to a

user representation, i.e., φ(u) for short of φ(u|c).

Content-based Neural CF

The neural collaborative filtering module is to learn preferences from user-news interactions. The

module takes concatenated representations of user and news [φ(u), ψ(c)] as input, and outputs

preference score

r̂uc = f([φ(u), ψ(c)]), (5.8)

where f is an MLP (multi-layer perceptron).

5.3 Methodology

5.3.1 TrNews

Architecture

The architecture of TrNews is shown in Figure 5.2, which has three parts. There are a source

network for the source domain S and a target network for the target domain T , respectively.

The source and target networks are both an instantiation of the base network (Section 5.2). The

translator enables knowledge transfer between the two networks (Section 5.3.1). We give an

overview of TrNews before introducing the base network and the translator.

• Target network The information flow goes from the input, i.e., (user u, candidate news

cT ) to the output, i.e., the preference score r̂ucT
, through the following three steps. First,
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Figure 5.2: Architecture of TrNews. There is a base network for each of the two domains.
The shaded gray area in the target network is empty for unseen users. The translator enables
knowledge transfer between source and target networks.

the news encoder ψT computes the news representation from its content. The candidate

news representation is:

ψT (cT ) = ψT (dcT
) (5.9)

where dcT
is cT ’s content. The representations of historical news articles [i]nucT

i=1 of the user

are [ψT (d(ucT )
i )]nucT

i=1 where d(ucT )
i is i’s content and nucT

is size of the history. Second, the

user encoder φT computes the user representation from her news history by:

φT (u) = φT

(
[ψT (d(ucT )

i )]nucT
i=1

)
. (5.10)

Third, the neural collaborative filtering (CF) module fT computes the preference score by:

r̂ucT
= fT ([φT (u), ψT (cT )]). (5.11)

We can denote the target network by a tuple (ψT , φT , fT ).

• Source network Similarly to the three-step computing process in target network, we

compute preference score r̂ucS
from input (u, cS) by:

r̂ucS
= fS([φS(u), ψS(cS)]) (5.12)

with tuple (ψS, φS, fS).
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• Translator The translator F learns a mapping from the user’s source representation to her

target representation by:

F : φS(u)→ φT (u). (5.13)

Translator

The target network suffers from the data sparsity issue of users who have no reading history. In

this section, we propose a transfer learning component (i.e., the translator) to enable knowledge

transfer for cross-domain news recommendation. The challenge is that user interests and word

distributions are different across domains. For example, we compute the word clouds for two

news corpora as shown in Figure 5.1. We can see that their word distributions are quite different

and vocabularies are also different. Hence, user representations computed from their news history

are heterogeneous across domains.

We build a translator, F : φS(u) → φT (u), to learn a mapping from a user’s source

representation to her target representation as shown in Figure 5.3. This translator captures the

relationship and heterogeneity across domains. The translator learns to approximate the target

representation from the source representation.

The translator takes a user’s source representation φS(u) as the input, and maps it to a hidden

representation zu via an encoder parameterized by θ, and then gets a approximated representation

φ̃S(u) from it via a decoder parameterized by θ′. The parameters ΘF = {θ, θ′} of the translator

are optimized to minimize the approximation error:

LF = 1
|U0|

∑
u∈U0

||Hφ̃S(u)− φT (u)||22, (5.14)

where U0 = US ∩ UT , and US and UT are the user sets of source and target domains, respectively.

H is to match the dimensions of source and target representations.

Note that, we do not minimize the approximation error between φS(u) and φ̃S(u) as with the

standard autoencoder because our goal is to learn a mapping from a user’s source representation

to her corresponding target representation. After training, the learned mapping function is then

used for inferring representations of unseen users in the target domain (the inference process will

be described later in Section 5.3.3). It fulfills knowledge transfer from the source to the target

domain via a supervised learning process.

Extensions The translator can be generalized to multiple, say k, source domains. We learn k

translators using the aligned examples from each of the source domain to the target domain and
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Figure 5.3: Translator. The translator enables knowledge transfer between source and target
networks.

then we average (or concatenate) the k mapped representations as the final representation for

the user. Another extension is to introduce denoising or stacking techniques into the translator

framework, not just the MLP structure in [77].

5.3.2 Objective and Optimization

We learn TrNews in two stages. First, we train the source network using source training examples

DS and train the target network using target training examples DT , respectively. Second, we

train the translator by pairs of user representations computed on-the-fly from source and target

networks. We introduce these two stages in detail.

First, TrNews optimizes the parameters associated with target network ΘT = {θφT
, θψT

, θfT
}

and source network ΘS = {θφS
, θψS

, θfS
} by minimizing the joint cross-entropy loss:

L = −
∑
DT

(rucT
log r̂ucT

+ (1− rucT
) log(1− r̂ucT

))

−
∑
DS

(rucS
log r̂ucS

+ (1− rucS
) log(1− r̂ucS

)), (5.15)

where the two terms on the right-hand side are to optimize losses over user-news examples in

the target and source domains, respectively. They are related by the word embedding matrix for

the union of words of the two domains. We generate DT and DS as follows and take the target

domain as an example since the procedure is the same for the source domain. Suppose we have
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a whole news reading history for a user u, say [d1, d2, ..., dnu ]. Then we generate the positive

training examples by sliding over the history sequence:

D+
T = {([di]c−1

i=1 , dc) : c = 2, ..., nu}. (5.16)

We adopt the random negative sampling technique [92] to generate the corresponding negative

training examples:

D−T = {([di]c−1
i=1 , d

′
c) : d′c /∈ [d1, d2, ..., dnu ]}, (5.17)

that is, we randomly sample a news article from the corpus as a negative sample which is not in

this user’s reading history.

Second, TrNews optimizes the parameters associated with the translator ΘF = {θ, θ′} by

Eq. (5.14). Since the aligned data is limited, we increase the training pairs by generating them

on-the-fly during the training of the two networks, i.e., in an alternating way. The model learning

is summarized in Algorithm 2.

Algorithm 1: Training of TrNews.
Input: DT , DS ,U0
Output: Source & target networks, translator
for iter = 1, 2, ..., 50 do

1. Train target and source networks with mini batch using DT , DS respectively;

2. for u ∈ U0 do

(a) Generate source representations φ(uS) using source network;

(b) Generate target representations φ(uT ) using target network;

(c) Train the translator using pairs (φ(uS), φ(uT )) with mini batch;

end

3. Compute metrics on the validation set;

if No improvement for 10 iters then
Early stopping;

end

end

5.3.3 Inference for Unseen Users

For a new user in the target domain (not seen in the training set U trainT ), we do not have any

previous history to rely on in learning a user representation for her. That is, the shaded area of
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the target network in Figure 5.2 is empty for unseen users.

TrNews estimates a new user u∗’s target representation by mapping from her source repre-

sentation using the learned translator F by:

φT (u∗) := F(φS(u∗)), ∀u∗ ∈ US ∧ u∗ /∈ U trainT , (5.18)

where we compute φS(u∗) using u’s latest reading history in the source domain. Then we can

predict the user preference for candidate news c∗ by:

r̂u∗c∗ = fT ([φT (u∗), ψT (c∗)]). (5.19)

5.4 Experiments

We evaluate the performance of TrNews (Section 5.4.2) and the effectiveness of the translator

(Section 5.4.3) in this section.

5.4.1 Data Sets and Evaluation Protocols

Data Sets

We evaluate on two real-world datasets.

• The first NY,FL,TX,&CA are four subdatasets extracted from a large dataset pro-

vided by an internet company Cheetah Mobile [44, 69]. The information contains news

reading logs of users in a large geographical area collected in January of 2017, ranging

from New York (NY), Florida (FL), Texas (TX), to California (CA) based on the division

of user geolocation. They are treated as four rather than a single because the user set is

not overlapped among them. The top two categories (political and daily) of news are used

as the cross corpora. The mean length of news articles is around 12 words while the max

length is around 50 words. The mean length of user history is around 45 articles while the

max length is around 900 articles.

• The second MIND is a benchmark dataset released by Microsoft for news recommen-

dation [125]. We use the MIND-small version to investigate the knowledge transfer when

news reading examples are not so large and it is publicly available1 . The title and abstract

1https://msnews.github.io/
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Data #user
Target domain Source domain

#news #reading #word #news #reading #word

NY 14,419 33,314 158,516 368,000 23,241 139,344 273,894
FL 15,925 33,801 178,307 376,695 25,644 168,081 340,797
TX 20,786 38,395 218,376 421,586 29,797 221,344 343,706
CA 26,981 44,143 281,035 481,959 32,857 258,890 375,612

MIND 25,580 9,372 211,304 461,984 8,577 120,409 346,988

Table 5.1: Statistics of the datasets.

of news are used as the content. The clicked historical news articles are the positive

examples for user. The top two categories (news and sports) of news are used as the cross

corpora. The word clouds of the two datasets are shown in Figure 5.1 and the statistics are

summarized in Table 5.1. The mean length of news articles is around 40 words while the

max length is around 123 words. Besides, the mean length of user history is around 13

articles while the max length is around 246 articles.

Evaluation protocol

We randomly split the whole user set into two parts, training and test sets where the ratio is

9:1. Given a user in the test set, for each news in her history, we follow the strategy in [42] to

randomly sample a number of negative news, say 99, which are not in her reading history and

then evaluate how well the recommender can rank this positive news against these negative ones.

For each user in the training set, we reserve her last reading news as the valid set. We follow

the typical metrics to evaluate top-K news recommendation [2, 89, 99] which are hit ratio (HR),

normalized discounted cumulative gain (NDCG), mean reciprocal rank (MRR), and the area

under the ROC curve (AUC). We report the results at cut-off K ∈ {5, 10}.

Implementation

We use TensorFlow. The optimizer is Adam [56] with learning rate 0.001. The size of mini batch

is 256. The neural CF module has two hidden layers with size 80 and 40 respectively. The size

of word embedding is 128. The translator has one hidden layer on the smaller datasets and two

on the larger ones. The history is the latest 10 news articles.
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5.4.2 Results: Comparing Different Recommenders

In this section, we show the recommendation results by comparing TrNews with different

state-of-the-art methods.

Baselines

We compare with following recommendation methods which are trained on the merged source

and target datasets by aligning with shared users.

• POP [96] recommends the most popular news.

• LR [80] is widely used in ads and recommendation. The input is the concatenation of

candidate news and user’s representations.

• DeepFM [37] is a deep neural network for ads and recommendation based on the wide &

deep structure. We use second-order feature interactions of reading history and candidate

news, and the input of deep component is the same as LR.

• DIN [148] is a deep interest network for ads and recommendation based on the attention

mechanism. We use the news content for news representations.

• TANR [123] is a state-of-the-art deep news recommendation model using an attention

network to learn the user representation. We adopt the news encoder and negative sampling

the same with TrNews.

Results

We have observations from results of different recommendation methods as shown in Table 5.7.

Firstly, considering that breaking and headline news articles are usually read by every user,

the POP method gets competitive performance in terms of NDCG and MRR since it ranks the

popular news higher than the other news.

Secondly, the neural methods are generally better than the traditional, shallow LR method

in terms of NDCG, MRR, and AUC on the four subdatasets. It may be that neural networks

can learn nonlinear, complex relations between the user and the candidate news to capture user

interests and news semantics. Considering that the neural representations of user and candidate

news are fed as the input of LR, it gets competitive performance on MIND data.

86



Approach Transfer strategy Formulation

CST [95] Identity mapping φT (u) = φS(u)
TCB [69]

DDTCDR [65] Linear mapping
φT (u) = HφS(u)
H is orthogonal

EMCDR [77] Nonlinear mapping φT (u) = MLP(φS(u))

Table 5.2: Different transfer learning strategies.

Finally, the proposed TrNews model achieves the best performance with a large margin

improvement over all other baselines in terms of HR, NDCG, and MRR and also with an

improvement in terms of AUC. It validates the necessity of accounting for the heterogeneity of

user interests and word distributions across domains. This also shows that the base network is

an effective architecture for news recommendation and the translator is effective to enable the

knowledge transfer from the source domain to the target domain. In more detail, it is inferior by

training a global model from the mixed source and target examples and then using this global

model to predict user preferences on the target domain, as baselines do. Instead, it is good by

training source and target networks on the source and target domains, respectively, and then

learning a mapping between them, as TrNews does.

5.4.3 Results: Comparing Different Transfer Strategies

In this section, we demonstrate the effectiveness of the translator-based transfer-learning strategy.

Baselines

We replace the translator of TrNews with the transfer-learning strategies of baseline methods

as summarized in Table 5.2. All baselines are state-of-the-art recommenders and capable of

recommending news to cold-start users. Note that, the compared transfer-learning methods

are upgraded from their original versions. We strengthen them by using the neural attention

architecture as the base component. In their original versions, CST and TCB use matrix

factorization (MF) while DDTCDR and EMCDR use multilayer perceptron. The neural attention

architecture has shown superior performance over MF and MLP in the literature [123, 148]. As a

result, we believe that the improvement will be larger if we compare with their original versions

but this is obviously unfair.
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Results

We have observations from results of different transfer learning strategies as shown in Table 5.8.

Firstly, the transfer strategy of identity mapping (CST) is generally inferior to the linear (TCB

and DDTCDR) and nonlinear (EMCDR and TrNews) strategies. CST directly transfers the source

knowledge to the target domain without adaptation and hence suffers from the heterogeneity of

user interests and word distributions across domains.

Secondly, the nonlinear transfer strategy of EMCDR is inferior to the linear strategy of TCB

in terms of MRR and AUC on the two smaller NY and FL datasets. This is probably because

EMCDR increases the model complexity by introducing two large fully-connected layers in

its MLP component. In contrast, our translator is based on the small-waist autoencoder-like

architecture and hence can resist overfitting to some extent.

Finally, our translator achieves the best performance in terms of NDCG, MRR and AUC on

the two smaller NY and FL datasets, and achieves competitive performance on the two larger

TX and CA datasets, and achieves the best performance in terms of HR and AUC on the MIND

dataset, comparing with other four transfer methods. These results validate that our translator is

a general and effective transfer-learning strategy to capture the diverse user interests accurately

during the knowledge transfer for the unseen users in cross-domain news recommendation.

5.4.4 Analyses

Benefit of knowledge transfer

We vary the percentage of shared users used to train the translator (see Eq. (5.14)) with:

{90%, 70%, 50%, 30%}.

We compare with a naive transfer strategy of CST, i.e., the way of direct transfer without

adaptation. The results are shown in Figure 5.4 on the New York dataset. We can see that it is

beneficial to learn an adaptive mapping during the knowledge transfer even when limited aligned

examples are available to train the translator. TrNews improves relative 0.82%, 0.77%, 0.67%,

0.64% in terms of HR@10 performance over CST by varying among {90%, 70%, 50%, 30%}

respectively. So we think that the more aligned examples the translator has, the more benefits it

achieves.
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Figure 5.4: Impact of percentage (90%, 70%, 50%, 30%.) of shared users used to train the
translator.
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Sharing? HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

No 81.31 94.69 59.43 63.72 54.37 97.16

Yes 82.60 95.15 60.78 64.83 55.70 97.28

Table 5.3: Impact of sharing word embeddings between source and target domains.

Strategy HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

Sepa. 82.36 94.86 60.62 64.65 55.51 97.28

Alter. 82.60 95.15 60.78 64.83 55.70 97.28

Table 5.4: Training TrNews with alternating (Alter.) vs separating (Sepa.) strategies.

Impact of sharing word embeddings

We investigate the benefits of sharing word embeddings between source and target domains.

There is a word embedding matrix for each of the domains and we share the columns if the

corresponding words occur in both domains. Take the New York dataset as an example, the size

of the intersection of their word vocabularies is 11,291 while the union is 50,263. From the

results in Table 5.3 we can see that it is beneficial to share the word embeddings even when only

22.5% words are intersected between them.

Impact of alternating training

We adopt an alternating training strategy between training the two (source & target) networks

and training the translator in our experiments. In this section, we compare this alternating

strategy with the separating strategy which firstly trains the two networks and then trains the

translator after completing the training of the two networks. That is, the training pairs of user

representations for the translator are not generated on-the-fly during the training of source

and target networks but generated only once after finishing their training. From the results in

Table 5.4, we see that the alternating strategy works slightly better. This is probably because

the aligned data between domains is limited and the alternating strategy increases the size of

training pairs.

Impact of two-stage learning

We adopt a two-stage model learning between training the two (source & target) networks and

training the translator in our experiments. In this section, we compare this two-stage learning
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Training HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

end-to-end 81.85 94.63 60.58 64.74 55.68 97.03

two-stage 82.60 95.15 60.78 64.83 55.70 97.28

Table 5.5: Training TrNews in two-stage vs end-to-end.

with an end-to-end learning which jointly trains the two networks and the translator. That is, the

parameters of the translator depend on the word embedding matrix and on parameters of the user

encoder. From the results in Table 5.5, we see that the two-stage learning works slightly better.

This is probably because the aligned data between domains is too limited to reliably update the

parameters which do not belong to the parameters of the translator.

Impact of the length of the history

Since we generate the training examples by sliding over the whole reading history for each user,

the length of reading history is a key parameter to influence the performance of TrNews. We inves-

tigate how the length of the history affects the performance by varying it with {3, 5, 10, 15, 20}.

The results on the New York dataset are shown in Figure 5.5a. We can observe that increasing

the size of the sliding window is sometimes harmful to the performance, and TrNews achieves

good results for length 10. This is probably because of the characteristics of news freshness

and of the dynamics of user interests. That is, the latest history matters more in general. Also,

increasing the length of the input makes the training time increase rapidly, which are 58, 83, 143,

174, and 215 seconds when varying with {3, 5, 10, 15, 20} respectively.

Impact of the embedding size

In this section, we evaluate how different choices of some key hyperparameter affect the per-

formance of TrNews. Except for the parameter being analyzed, all other parameters remain the

same. Since we compute the news and user representations using the content of words, the size

of word embedding is a key parameter to influence representations of words, uses, and news

articles, and hence the performance of TrNews. We investigate how embedding size affects the

performance by varying it with {32, 64, 100, 128, 200}. The results on the New York dataset

are shown in Figure 5.5b. We can observe that increasing the embedding size is generally not

harmful to the performance until 200, and TrNews achieves good results for embedding size 128.

Changing it to 200 harms the performance a little bit since the model complexity also increases.

91



(a) History length. (b) Embedding size.

Figure 5.5: Impact of the history length (left) and embedding size (right).

Optimization performance and loss

We show the optimization performance and loss over iterations on the New York dataset in

Figure 5.6. We can see that with more iterations, the training losses gradually decrease and the

recommendation performance is improved accordingly. The most effective updates are occurred

in the first 15 iterations, and performance gradually improves until 30 iterations. With more

iterations, TrNews is relatively stable. For the training time, TrNews spends 143 seconds per

iteration. As a reference, it is 134s for DIN and 139s for TCB, which indicates that the training

cost of TrNews is efficient by comparing with baselines. Furthermore, the test time is 150s. The

experimental environment is Tensorflow 1.5.0 with Python 3.6 conducted on Linux CentOS 7

where The GPU is Nvidia TITAN Xp based on CUDA V7.0.27.

Examining user profiles

One advantage of TrNews is that it can explain which article in a user’s history matters the most

for a candidate article by using attention weights in the user encoder module. Table 6.7 shows an

example of interactions between some user’s history articles No. 0-9 and a candidate article No.

10, i.e., the user reads the candidate article after read these ten historical articles. We can see that

the latest three articles matter the most since the user interests may remain the same during a

short period. The oldest two articles, however, also have some impact on the candidate article,

reflecting that the user interests may mix with a long-term characteristic. TrNews can capture

these subtle short- and long-term user interests.
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(a) HR@10. (b) NDCG@10.

(c) AUC.

Figure 5.6: Performance (right Y-axis in red cross) and loss (left Y-axis in blue circle) varying
with training iterations.
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No. News title
Attn.

weight

0 hillary clinton makes a low-key return to washington 0.04
1 the hidden message in obama’s ‘farewell’ speech 0.12*
2 here’s why sasha obama skipped the farewell address 0.00

3
donald trump’s ‘prostitute scandal’ was filmed by cameras
and recorded with microphones hidden behind the walls 0.00

4
white house official explains

sasha obama’s absence at father’s farewell speech 0.00

5
irish bookie puts odds on trump’s administration,

inauguration and impeachment 0.00

6 heads are finally beginning to roll at the clinton foundation 0.00

7
donald trump’s incoming administration considering

white house without press corps 0.76

8 donald trump says merkel made ‘big mistake’ on migrants 0.05
9 controversial clinton global initiative closing its doors for good 0.00

10
army chief gen. bipin rawat talks about equal responsibility

for women in the frontlines. we couldn’t agree more N/A

Table 5.6: Example I: Some articles matter more while some are negligible. (No. 10 is the
candidate news)

5.5 Related Work

Content recommendation Content-based recommendation exploits the content information

about items (e.g., news title and article body [49, 76, 125, 129, 131], tag, vlog [32]), builds a

profile for each user, and then matches users to items [72, 124, 141]. It is effective for items with

content or auxiliary information but suffers from the issues of data sparsity for users. DCT [3]

constructs a user-user similarity matrix from user demographic features including gender, age,

occupation, and location [96]. NT-MF [52] constructs a user-user similarity matrix from Twitter

texts. BrowseGraph [114] addresses the freshly news recommendation by constructing a graph

using URL links between web pages. NAC [101] transfers from multiple source domains through

the attention mechanism. PdMS [27] assumes that there are many recommender models available

to select items for a user, and introduces a multi-armed bandit for model selection. LLAE [64]

needs a social network as side information for cold-start users. Different from the aforementioned

works, we aim to recommending news to unseen users by transferring knowledge from a source

domain to a target domain.
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Transfer learning Transfer learning aims at improving the performance of a target domain by

exploiting knowledge from source domains [93]. A special setting is domain adaptation where a

source domain provides labeled training examples while the target domain provides instances on

which the model is meant to be deployed [34, 66]. The coordinate system transfer (CST) [95]

firstly learns the principle coordinate of users in the source domain, and then transfers it to the

target domain in the way of warm-start initialization. This is equivalent to an identity mapping

from users’ source representations to their corresponding target representations. TCB [69] learns

a linear mapping to translate target feature examples to the source feature space because there

are many labelled data in the source domain. This linear strategy is also used in CoNet [43] and

DDTCDR [65] which transforms the source representations to the target domain by a translation

matrix. Nonlinear mapping strategy [28, 77, 149] is to learn a supervised mapping function

between source and target latent factors by using neural networks. SSCDR [54] extends them to

the semi-supervised mapping setting. Our translator is general to accommodate these identity,

linear, and nonlinear transfer-learning strategies.

5.6 Conclusions

We investigate the cross-domain news recommendation via transfer learning. The experiments

on real-word datasets demonstrate the necessity of tackling heterogeneity of user interests and

word distributions across domains. Our TrNews model and its translator component are effective

to transfer knowledge from the source network to the target network. We also shows that it is

beneficial to learn a mapping from the source domain to the target domain even when only a

small amount of aligned examples are available. In future works, we will focus on preserving

the privacy of the source domain when we transfer its knowledge.
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NY HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

POP 52.96 67.66 40.34* 45.10 39.89* 77.92
LR 53.24 74.00 36.15 42.86 34.95 91.64

TANR 52.53 71.63 37.24 43.37 36.50 91.35
DeepFM 52.02 73.71 39.17 45.38 39.56 91.79

DIN 57.10* 75.66* 40.23 46.13* 38.65 92.29*

TrNews 82.60 95.15 60.78 64.83 55.70 97.28

FL HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

POP 52.45 66.14 39.72* 44.15 39.15* 79.33
LR 54.26* 73.90* 37.15 43.56 35.89 91.79

TANR 49.98 69.46 36.08 42.37 35.95 90.88
DeepFM 52.36 73.02 36.05 42.74 36.29 91.64

DIN 53.98 73.33 37.96 44.18* 36.96 91.86*

TrNews 81.83 94.45 62.53 66.63 58.39 97.41

TX HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

POP 54.21 67.87 40.62* 45.03* 39.64* 81.31
LR 55.72* 73.80* 39.24 44.97 37.78 91.74*

TANR 49.87 68.75 35.82 41.89 35.59 90.56
DeepFM 52.19 71.95 35.40 41.92 35.65 91.17

DIN 53.72 72.70 38.47 44.59 37.62 91.53

TrNews 81.50 94.67 61.76 66.11 57.49 97.21

CA HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

POP 58.32* 71.19 44.71* 48.86* 43.44* 83.38
LR 58.82 75.67* 42.16 47.65 40.44 92.37*

TANR 49.87 68.75 35.81 41.88 35.58 90.56
DeepFM 55.58 74.73 38.82 45.16 38.21 92.25

DIN 55.31 73.70 40.14 46.09 39.20 92.03

TrNews 81.54 94.72 61.99 66.25 57.70 97.22

MIND HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

POP 84.18 92.80 69.61 72.43 66.33 95.13
LR 92.69* 96.66* 85.81 87.11* 84.33* 97.92*

TANR 89.94 95.34 89.94* 83.38 79.84 97.86
DeepFM 89.16 94.78 79.36 81.19 77.12 97.63

DIN 89.28 94.88 80.16 82.03 78.22 97.63

TrNews 97.36 99.02 94.16 94.74 93.45 99.47

Table 5.7: Comparison of different recommenders.
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NY HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

CST 81.04 94.37 59.04 63.56 54.19 96.94
TCB 82.18 94.92* 60.36* 64.46* 55.23* 97.28*

DDTCDR 82.27 94.90 59.82 63.90 54.51 97.25
EMCDR 82.44* 94.87 60.35 64.33 55.06 97.24

TrNews 82.60 95.15 60.78 64.83 55.70 97.28

FL HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

CST 79.29 93.91 59.03 63.60 54.74 97.07
TCB 81.51 94.83 62.06 66.33* 57.90* 97.40*

DDTCDR 81.39 94.63* 61.76 66.12 57.68 97.37
EMCDR 81.52* 94.47 62.14* 66.23 57.87 97.37

TrNews 81.83 94.45 62.53 66.63 58.39 97.41

TX HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

CST 78.74 94.20 58.53 63.48 54.56 96.92
TCB 80.68 94.12 61.06 65.38 56.97 97.10

DDTCDR 81.08 94.57 61.02 65.50 56.87 97.10
EMCDR 81.34* 94.72 61.78 66.11* 57.59 97.16*

TrNews 81.50 94.67* 61.76* 66.11 57.49* 97.21

CA HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

CST 79.92 93.71* 60.19 64.63 55.97 97.12
TCB 80.90* 93.71* 62.32 66.45 58.35 97.36

DDTCDR 80.22 93.47 61.42 65.72 57.44 97.25
EMCDR 80.53 93.33 62.04* 66.18 58.11* 97.30*

TrNews 81.54 94.72 61.99 66.25* 57.70 97.22

MIND HR@5 HR@10 NDCG@5 NDCG@10 MRR AUC

CST 96.93 98.49 93.83 94.34 93.09 99.32
TCB 97.41* 98.94 94.21* 94.72 93.43 99.41

DDTCDR 97.38 98.99 94.25 94.78 93.49 99.46*
EMCDR 97.42 99.01* 94.16 94.68 93.35 99.45

TrNews 97.36 99.02 94.16 94.74* 93.45* 99.47

Table 5.8: Comparison of different transfer strategies.
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Chapter 6

Adversarial Knowledge Transfer in

Recommendation

Transfer learning is an effective technique to improve a target recommender system with the

knowledge from a source domain. Existing research focuses on the recommendation performance

of the target domain while ignores the privacy leakage of the source domain. The transferred

knowledge, however, may unintendedly leak private information of the source domain. For

example, an attacker can accurately infer user demographics from their historical purchase

provided by a source domain data owner. In this chapter, we address the above privacy-preserving

issue by learning a privacy-aware neural representation by improving target performance while

protecting source privacy. The key idea is to simulate the attacks during the training for protecting

unseen users’ privacy in the future, modeled by an adversarial game, so that the transfer learning

model becomes robust to attacks. Experiments show that the proposed PrivNet model can

successfully disentangle the knowledge benefitting the transfer from leaking the privacy.

6.1 Introduction

Recommender systems (RSs) are widely used in everyday life ranging from Amazon prod-

ucts [116, 148] and YouTube videos [15, 32] to Twitter microblogs [51] and news feeds [76, 117].

RSs estimate user preferences on items from their historical interactions. RSs, however, cannot

learn a reliable preference model if there are too few interactions in the case of new users and

items, i.e., suffering from the data sparsity issues.

Transfer learning is an effective technique for alleviating the issues of data sparsity by

exploiting the knowledge from related domains [69, 95]. We may infer user preferences on
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Figure 6.1: t-SNE projection of transferred representations of users with (left) and without (right)
training of PrivNet on the MovieLens-Gender dataset. (see Section 6.4.5 for details)

videos from their Tweet texts [52], from movies to books [61], and from news to apps [43, 44].

These behaviors across domains are different views of the same user and may be driven by some

inherent user interests [25].

There is a privacy concern when the source domain shares their data to the target domain due

to the ever-increasing user data abuse and privacy regulations [102, 137]. Private information

contains those attributes that users do not want to disclose, such as gender and age [53]. They

can be used to train better recommendation models by alleviating the data sparsity issues to build

better user profiles [15, 146]. Previous work [5, 122] shows that an attacker can accurately infer

a user’s gender, age, and occupation from their ratings, recommendation results, and a small

amount of users who reveal their demographics.

Privacy-leakage Example On a typically widely used movie recommendation benchmark,

MovieLens1 , there are 50 movies rated by Female only (e.g., Country Life (1994)), while 350

movies rated by Male only (e.g., Time Masters (1982)). It implies that the occurrence of a rating,

regardless of its numeric value (true or noisy), leaks the user privacy on revealing their genders.

When these source rating examples are transferred to a target domain, the third party (the target

domain or the malicious attacker) can infer the user privacy of the source domain from the rating

instances, even though the source domain didn’t explicitly provide any user private attributes to

the target domain.

1https://grouplens.org/datasets/movielens/
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A technical challenge for protecting user privacy in transfer learning is that the transferred

knowledge has dual roles: usefulness to improve target recommendation and uselessness to infer

source user privacy.

Another challenge is that the recommender in the target domain does not know the attackers

and has no control over it during the test. The goal of the recommender model is to recommend

ranked items to users such that any potential adversary cannot infer users’ private attributes (e.g.,

age, gender and occupation). However, a challenge is that the recommendation system does not

know the malicious attacker’s model. The attacker can iteratively adapt its model regarding to

existing recommender since the attacker can get the recommended results from the recommender

(the recommended results are publicly visible to users) but not vice versa. In other words, the

attacker is in the dark place which is not visible to the target recommender while the target

recommender is in the light place which is visible to the attacker.

In this chapter, we propose a novel model (PrivNet) to achieve the two goals by learning

privacy-aware transferable knowledge such that it is useful for improving recommendation

performance in the target domain while it is useless to infer private information of the source

domain. The key idea is to simulate the attack during the training for protecting unseen users’

privacy in the future. The privacy attacker and the recommender are naturally modeled by an

adversarial learning game. The main contributions are two-fold:

• PrivNet is the first to address the privacy protection issues, i.e., protecting source user

private attributes while improving the target performance, during the knowledge transfer

in neural recommendation.

• PrivNet achieves a good tradeoff between the utility and privacy of the source information

through evaluation on real-world datasets by comparing with strategies of adding noise

(i.e., differential privacy) and perturbing ratings.

6.2 Problem Description

6.2.1 Problem Formulation

We have two domains, a source domain S and a target domain T . User sets in two domains are

shared, denoted by U (of size m = |U|). Denote item sets in two domains by IS and IT (of size

nS = |IS| and nT = |IT |), respectively. For the target domain, a binary matrix RT ∈ Rm×nT
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describes the user-item interactions, where the entry rui ∈ {0, 1} equals 1 if user u has an

interaction with item i and 0 otherwise. Similarly, for the source domain, we have RS ∈ Rm×nS

and the entry ruj ∈ {0, 1}. We reserve i and j to index the target and source items, respectively.

Let Y p ∈ Rm×cp denote the p-th user private attribute (e.g., p=‘Gender’) matrix where each

entry yu,p is the value of the p-th private information for user u (e.g., yu,p=‘Male’) and there are

cp choices. Denote all n private attributes data by Y = {Y p}np=1 (e.g., Gender, Age). We can

define the problem as follows:

PROBLEM: Privacy-aware transfer learning in recommendation.

INPUT: RT ,RS,Y .

OUTPUT: Generate a ranked list of items for users in the target domain.

REQUIRE: An attacker is difficult to infer the source user private attributes from the knowl-

edge transferred to the target domain.

ASSUMPTION: Some users Upub ⊂ U share their private information with the public profile.

6.2.2 Recommender

In this section, we introduce a novel transfer-learning recommender which has three parts, a

source network for the source domain, a target network for the target domain, and a knowledge

transfer unit between the two domains.

Target network

The input is a pair of (user, item) and the output is their matching degree. The user is represented

by their w-sized historical items [i1, ..., iw]. First, an item embedding matrix AT projects

the discrete item indices to the d-dimensional continuous representations: xi and xi∗ where

∗ ∈ [1, 2, ..., w]. Second, the user representation xu is computed by the user encoder module

based on an attention mechanism by querying their historical items with the predicted item:

xu =
∑

i∗
αi∗xi∗ , (6.1)

where αi∗ = xTi xi∗ (normalized:
∑
αi∗ = 1). Third, a multilayer perceptron (MLP) fT

parameterized by φT is used to compute target preference score (the notation [·, ·] denotes

concatenation):

r̂ui = P (rui|u, i; θT ) = fT ([xu,xi]), (6.2)

where θT = {AT , φT} is the model parameter.
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Figure 6.2: Architecture of PrivNet (a version of three layers). It has two components: the
recommender and privacy attacker. The recommender (the left & right parts, see Section 6.2.2) is
a representation-based transfer learning model where the red arrows indicate the representations
transferred from the source domain to the target domain in a multilayer way. The privacy attacker
(the middle part, see Section 6.3.1) marked by an avatar infers user privacy from the transferred
representations. PrivNet (see Section 6.3.1) exploits the knowledge from the source domain with
regularization from the adversary loss of the attacker indicated by the dotted box.
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Source network

Similar to the three-step computing process in the target network, we compute the source

preference score by:

r̂uj = P (ruj|u, j; θS) = fS([xu,xj]), (6.3)

where θS = {AS, φS} is the model parameter with item embedding matrix AS and multilayer

perceptron φS .

Transfer unit

The transfer unit implements the knowledge transfer from the source to the target domain. Since

typical neural networks have more than one layer, say L, the representations are transferred in a

multilayer way. Let x`u|# where # ∈ {S, T} be user u’s source/target representation in the `-th

layer (` = 1, 2, ..., L− 1) where x1
u|S = [xu,xj] and x1

u|T = [xu,xi]. The transferred represen-

tation is computed by projecting the source representation to the space of target representations

with a translation matrix H`:

x`u|trans = H`x`u|S, (6.4)

With the knowledge from the source domain, the target network learns a linear combination

of the two input activations from both networks and then feeds these combinations as input to the

successive layer’s filter. In detail, the (`+ 1)-th layer’s input of the target network is computed

by:

W `
Tx

`
u|T + x`u|trans, (6.5)

where W `
T is the connection weight matrix in the `-th layer of the target network. The total

transferred knowledge is concatenated by all layers’s representations:

xu|trans = [x`u|trans]L−1
`=1 . (6.6)

Objective

The recommender minimizes the negative logarithm likelihood:

L(θ) = −
∑
DT

logP (rui|u, i; θT )−
∑
DS

logP (ruj|u, j; θS), (6.7)

where θ = {θT , θS, {H`}L−1
`=1 }, DT and DS are target and source training examples, respectively.

We introduce how to generate them in Section 6.3.2.
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6.3 Methodology

The architecture of PrivNet is shown in Figure 6.2. It has two components, a recommender and

an attacker. We present an attack against the recommender (Section 6.3.1). We propose PrivNet

to protect source user privacy during the knowledge transfer (Section 6.3.1).

6.3.1 PrivNet

Attacker

The recommender can fulfil the Problem 1 (see Section 6.2) if there is no attacker existing. A

challenge for the recommender is that it does not know the attacker models in advance. To

address this challenge, we add an attacker component during the training to simulate the attacks

for the test. By integrating a simulated attacker into the recommender, it can deal with the unseen

attacks in the future. In this section, we introduce an attacker to infer the user private information

from the transferred knowledge. In the next Section 6.3.1, we will introduce an adversarial

recommender by exploiting the simulated attacker to regularize the recommendation process in

order to fool the adversary so that it can protect the privacy of unseen users in the future.

The attacker model predicts the private user attribute from their source representation sent to

the target domain:

ŷu,p = P (yu,p|xu|trans; θp)

= fp(xu|trans; θp),
(6.8)

where ŷu,p is the predicted value of user u’s p-th private attribute and p = 1, ..., n. The fp is the

prediction model parameterized by θp. Note that, an attacker can use any prediction model and

here we use an MLP due to its nonlinearity and generality.

For all n private user attributes, the attacker model minimizes the multitask loss:

L(Θ) = − 1
n

∑
p

∑
Dp

logP (yu,p|xu|trans; θp), (6.9)

where Θ = {θp}np=1 and Dp is training examples for the p-th attribute. We introduce how to

generate them in Section 6.3.2.

Put It All Together

So far, we have introduced a recommender to exploit the knowledge from a source domain and a

privacy attacker to infer user private information from the transferred knowledge. To fulfill the
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Problem 1 in Section 6.2, we need to achieve two goals: improving the target recommendation

and protecting the source privacy. In this section, we propose a novel model (PrivNet) by

exploiting the attacker component to regularize the recommender.

Since we have two rival objectives (i.e., target quality and source privacy), we adopt the

adversarial learning technique [36] to learn a privacy-aware transfer model. The generator is a

privacy attacker which tries to accurately infer the user privacy, while the discriminator is an

recommender which learns user preferences and deceives the adversary. The recommender of

PrivNet minimizes:

L̃(θ) = L(θ)− λL(Θ), (6.10)

where the hyperparameter λ controls the influence from the attacker component. PrivNet seeks to

improve the recommendation quality (the first term on the right-hand side) and fools the adversary

by maximizing the loss of the adversary (the second term,). The adversary has no control over

the transferred knowledge, i.e., xu|trans. Losses of the two components are interdependent but

they optimize their own parameters. PrivNet is a general framework since both the recommender

and the attacker can be easily replaced by their variants. PrivNet reduces to privacy-agnostic

transfer model when λ = 0.

We also reformulate the objective function of recommendation systems in a min-max game

way as minimizing the private attacker’s gain as well as the recommendation loss simultaneously:

min
θ={θT ,θS ,{H`}L−1

`=1 }

(
L(θ)− λ

private attribute attacker︷ ︸︸ ︷
max

Θ={θp}n
p=1

L(Θ)
)

︸ ︷︷ ︸
privacy-aware transfer learning in recommendation system

(6.11)

We further clarify the PrivNet model from the perspective of the above min-max optimization

objective. Firstly, PrivNet tries to learn the transferred knowledge in the source domain by

optimizing the parameters in the source space. Secondly, the attacker can happen anywhere

including in the target domain, that is the target domain may try to recover the private attributes

in the source domain from the transferred knowledge. Together, PrivNet is to achieve such a

goal: learning a privacy-aware transfer representation which has the best transfer gain from the

space of the least privacy leakage. The hyperparameter controls the balance on whether PrivNet

prefers more transfer gain benefiting target domain or prefers less privacy leakage for source

domain.
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Algorithm 2: Training PrivNet.
Input: Target data DT , source data DS , privacy data Dpriv, hyperparameter λ
Output: PrivNet
for number of training iterations do

1. Accumulate (user, attributes) with a mini-batch (Ub,Yb) from Dpriv

2. Feed users Ub and their history in DS into the source network (see Sec. 6.2.2)
so as to generate the transferred knowledge Xb|S

3. Update Θ using examples (Xb|S,Yb) via gradient descent over L(Θ).

4. Update θ using mini-batch examples from DS and DT with
adversary loss via gradient descent over L̃(θ).

end
The gradient-based updates can use any standard gradient-based learning rule. Deep
learning library (e.g., TensorFlow) can automatically calculate gradients.

6.3.2 Objective and Optimization

Generating Training Examples

We generate DT and DS as follows and take the target domain as an example since the procedure

is the same for the source domain. Suppose we have a whole item interaction history for some

user u, say [i1, i2, ..., il]. Then we generate the positive training examples by sliding over the

sequence of the history:

D+
T = {([iw]c−1

w=1, ic) : c = 2, ..., l}. (6.12)

We adopt the random negative sampling technique [92] to generate the corresponding negative

training examples:

D−T = {([iw]c−1
w=1, i

′
c) : i′c /∈ [i1, i2, ..., il]}. (6.13)

As the same with [5, 122], we assume that some users Upub ⊂ U share their private attributes

with the public profile. Then we have the labelled privacy data:

Dpriv = {Dp}np=1 where Dp = {(u, yu,p) : u ∈ Upub}. (6.14)

Model Learning

The training process of PrivNet is illustrated in Algorithm 2.

Lines 1-3 are to optimize the privacy part related parameter, i.e., Θ in L(Θ). On line 1, it

creates a mini-batch size examples from data Dpriv. Each example contains a user and their
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corresponding private attributes (u, {yu,p}np=1). On line 2, it feeds users and their historical items

in the source domain to the source network so as to generate transferred knowledge xu|trans. On

line 3, the transferred knowledge and their corresponding private attributes (xu|trans, {yu,p}np=1)

are used to train the privacy attacker component by descending its stochastic gradient using the

mini-batch examples:

∇ΘL(Θ).

Line 4 is to optimize the recommender part related parameter, i.e., θ by descending its

stochastic gradient with adversary loss using mini-batch examples:

∇θL̃(θ).

6.3.3 Complexity Analysis

The parameter complexity of PrivNet is the addition of its recommender component and the

privacy component. The embedding matrices of the recommender dominate the number of

parameters as they vary with the input. As a result, the parameter complexity of PrivNet is

O(d · (nS + nT )) where d is the embedding dimension, and nS and nT are the number of items

in the source and target domains respectively.

The learning complexity of PrivNet divides into two parts: the forward prediction and

backward parameter update. The forward prediction of PrivNet is the addition of its recommender

component and two times of the privacy component since the recommender component needs

the loss from the privacy component. The complexity of backward parameter update is the

addition of its recommender component and the privacy component since they optimize their

own parameters.

6.4 Experiments

In this section, we conduct experiments to evaluate both recommendation performance and

privacy protection of PrivNet.

6.4.1 Datasets and Evaluation Protocols

Datasets

We evaluate on the following real-world datasets.
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Data #user
Target domain Source domain Private

attribute#item #rating #item #rating

Foursquare 29,515 28,199 357,553 28,407 467,810 G

MovieLens 5,967 2,049 274,115 1,484 299,830 G, A

Table 6.1: Statistics of datasets. (G=Gender, A=Age)

• Foursquare (FS) It is a public available data on user-venue checkins [135]. The source

and target domains are divided by the checkin’s time, i.e., dealing with the covariate shift

issues where the distribution of the input variables change between the old data and the

newly collected one. The private user attribute is Gender.

• MovieLens (ML) It is a public available data on user-movie ratings [39]. We reserve those

ratings over three stars as positive feedbacks. The source and target domains are divided

by the movie’s release year, i.e., transferring from old movies to the new ones. The private

user attributes are Gender and Age. Following [5], we categorize Age into three groups:

over-45, under-35, and between 35 and 45.

The statistics are summarized in Table 6.1 and we can see that all of the datasets have more

than 99% sparsity. It is expected that the transfer learning technique is helpful to alleviate the

data sparsity issues in these real-world recommendation services.

Evaluation Metric

For privacy evaluation, we follow the protocol in [53] to randomly sample 80% of users as the

training set and treat the remaining users as the test set. The users in the training set has publicly

shown their private information while the users in the test set keep it private. We split a small data

from the training set as the validation set where the ratio is train:valid:test=7:1:2. For privacy

metrics, we compute Precision, Recall, and F1-score in a weighted2 way which are suitable for

imbalanced data distribution [26]. We report results for each private attribute. We first calculate

metrics for each label, and then compute their average weighted by support (the number of true

instances for each label). A lower value indicates better privacy protection.

For recommendation evaluation, we follow the leave-one-out strategy in [42], i.e., reserving

the latest one interaction as the test item for each user, then randomly sampling a number of (e.g.,

2Note, the weighted F1 values are not necessarily equal to the harmonic mean of the corresponding Precision
and Recall values.
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Hyperparameter Setting

train:valid:test 7:1:2
user representation size 80
item representation size 80

history length cutoff (#items) 10
neural collaborative filtering layers [80, 64]

attention unit layers [80, 64]
number of transfer layers 1

negative sampling ratio for training 1
test positive:negative 1:99

clip norm 5
batch size 128
bias init 0

weight init Glorot uniform
embedding init Glorot uniform

learning rate 5e-4
optimizer Adam

activation function sigmoid
total epochs (with early stopping) 50

Table 6.2: Setting of hyperparameters.

99) negative items that are not interacted by the user. We evaluate how well the recommender can

rank the test item against these negative ones. We split a small data from the training set as the

validation set where the ratio is train:valid:test=7:1:2. For recommendation metrics, we compute

hit ratio (HR), normalized discounted cumulative gain (NDCG), mean reciprocal rank (MRR),

and AUC for top-K (default K = 10) item recommendation [29]. A higher value indicates better

recommendation.

Implementation

All methods are implemented using TensorFlow. Parameters are initialized by default. The

optimizer is the adaptive moment estimation with learning rate 5e-4. The size of mini-batch is

128 with negative sampling ratio 1. The embedding size is 80 while the MLP has one hidden

layer with size 64. The history size is 10. λ is 1 in Eq. (6.10). The noise level is 10%. The

number of dummy items are 5. The privacy related metrics are computed by Python scikit-learn

library. The setting of hyperparameters used to train our model and the baselines is summarized

in Table 6.2.
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Methods Knowledge transfer Privacy protection (+strategy)

BPRMF (Rendle et al, 2009) [105] 7 7

MLP (He et al, 2017) [42] 7 7

CSN (Misra et al, 2016) [83] 3 7

CoNet (Hu et al, 2018) [43] 3 7

BlurMe (Weinsberg et al, 2012) [122] 7 3 (+perturbation)
LDP (Bassily and Smith, 2015) [4] 7 3 (+noise)
PrivNet (ours) 3 3 (+adversary)

Table 6.3: Categorization of comparing methods.

6.4.2 Baseline

We compare PrivNet with various kinds of baselines as summarized in Table 6.3.

The following methods are privacy-agnostic.

• BPRMF: Bayesian personalized ranking [105] is a latent factors approach which learns

user and item factors via matrix factorization.

• MLP: Multilayer perceptron [42] is a neural CF approach which learns the user-item

interaction function using neural networks.

• CSN: The cross-stitch network [83] is a deep transfer learning model which couples the

two basic networks via a linear combination of activation maps using a translation scalar.

• CoNet: Collaborative cross network [43] is a deep transfer learning method for cross-

domain recommendation which learns linear combination of activation maps using a

translation matrix.

The following methods are privacy-aware.

• BlurMe: This method [122] perturbs a user’s profile by adding dummy items to their

history. It is a representative of the perturbation-based technique to recommend items

while protect private attributes.

• LDP: Local differential privacy [4] modifies user-item ratings by adding noise to them

based on the differential privacy. It is a representative of the noise-based technique to

recommend items while protect private attributes. Note, the original LDP and BlurMe are

single-domain models which are also used as comparing baselines in [5].
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Dataset Metric BPRMF MLP CSN CoNet BlurMe LDP PrivNet

HR 36.5 47.0 52.7 53.4* 52.6 44.5 54.3
Foursquare NDCG 22.0 31.5 35.9 36.3* 35.4 29.9 36.8

MRR 17.6 31.9 35.0* 35.3 32.1 27.1 33.4

HR 53.0 77.4 82.7 77.1 85.7 85.8* 86.0
MovieLens NDCG 37.0 50.5 55.7 50.7 69.7 69.9 69.9

MRR 32.0 44.5 49.3 44.6 65.9 65.9 65.7*

Table 6.4: Comparison results of different methods on recommendation performance. The bold
face indicates the best result while the star mark indicates the second best.

To be fair and to investigate the influence of privacy-preserving strategies, we replace the

adversary strategy of PrivNet with the strategy of LDP (adding noise) and BlurMe (perturbing

ratings), and keep the other components the same.

6.4.3 Results: Comparing Recommendation Performance

The results of different methods on recommendation are summarized in Table 6.4. A higher

value indicates better recommendation performance.

Comparing with the privacy-agnostic methods (BPRMF, MLP, CSN, and CoNet), PrivNet

is superior than them with a large margin on the MovieLens dataset. This shows that PrivNet

is effective in recommendation while it protects the source private attributes. Since these four

methods represent a wide range of typical recommendation methods (matrix factorization, neural

CF, transfer learning), we can see that the architecture of PrivNet is a reasonable design for

recommender systems.

Comparing with the privacy-aware methods (LDP and BlurMe), we can see that LDP

significantly degrades recommendation performance with a reduction about six to ten percentage

points on the Foursquare dataset. This shows that LDP suffers from the noisy source information

since it harms the usefulness of the transferred knowledge to the target task. For BlurMe, we

can see that BlurMe still degrades recommendation performance on the Foursquare dataset, for

example with relative 4.0% performance reduction in terms of MRR. This shows that BlurMe

suffers from the perturbed source information since it harms the usefulness of the transferred

knowledge to the target task.

Among the privacy-aware methods, PrivNet achieves the best recommendation performance

in terms of all HR, NDCG, and MRR on the Foursquare dataset, and the best in terms of HR
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Dataset Metric LDP BlurMe PrivNet

Foursquare
Precision 64.7 73.2 66.8

Recall 75.2 75.3 71.1
F1 66.0 66.7 68.1

MovieLens-G
Precision 73.4 69.4 70.9

Recall 75.4 71.7 72.5
F1 73.6 70.1 62.0

MovieLens-A
Precision 63.8 54.6 55.4

Recall 65.5 58.1 57.9
F1 61.4 54.2 46.3

Table 6.5: Comparison results on privacy protection. The bold face indicates the best result (the
lower the better).

on the MovieLens dataset. It shows that PrivNet is better for improving the usefulness of the

transferred knowledge by comparing with LDP and BlurMe.

In summary, PrivNet is effective in transferring the knowledge, showing that the adversary

strategy of PrivNet achieves state-of-the-art performance by comparing with the strategies of

adding noise (LDP) and perturbing ratings (BlurMe).

6.4.4 Results: Comparing Privacy Protection

The results of different methods on privacy inference are summarized in Table 6.5 (Note, there

are no results for the four privacy-agnostic methods). A lower value indicates better privacy

protection.

Comparing PrivNet and BlurMe, we can see that the perturbation method by adding dummy

items still suffers from privacy inference attacks in terms of Precision and Recall on the

Foursquare dataset, and in terms of F1 on the MovieLens dataset. The reason may be that

the attacker can effectively distinguish the true profiles from the dummy items. That is, it can

accurately learn from the true profiles while ignore the dummy items. Comparing PrivNet and

LDP, we can see that adding noise to ratings still suffers from privacy inference attacks in terms

of Recall on the Foursquare dataset, and in terms of all three metrics on the MovieLens dataset.

It implies that the occurrence of a rating, regardless of its numeric value (true or noisy), leaks the

user privacy. That is, the binary event of excluding or including an item in a user’s profile is a

signal for user privacy inference nearly as strong as numerical ratings. In particular, there are 50

movies rated by Female only (e.g., Country Life (1994)) while 350 by Male only (e.g., Time
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Adversary Foursquare MovieLens-Gender MovieLens-Age
loss? Precision Recall F1 Precision Recall F1 Precision Recall F1

No 73.2 75.4 68.5 73.6 75.6 73.5 60.8 65.3 61.4
Yes 66.8 71.1 68.1 70.9 72.5 62.0 55.4 57.9 46.3

Table 6.6: Necessity of adversary loss to regularize the recommender (lower value better privacy
protection).

Masters (1982)). Adding noise to these ratings may not influence the inference of Gender for

these users very much.

PrivNet achieves nearly half the best results on privacy protection in terms of three evaluation

metrics on the two datasets. It has significantly lower F1 scores in comparison to all baselines

on the MovieLens dataset. It is effective to hide private information during the knowledge

transfer. By simulating the attacks during the training, PrivNet is prepared against the malicious

attacks for unseen users in the future. In summary, PrivNet is an effective source privacy-aware

transfer model such that it makes the malicious attackers more difficult to infer the source user

privacy during the knowledge transfer, compared with the strategies of adding noise (LDP) and

perturbing ratings (BlurMe).

6.4.5 Analyses

Clustering on Transferable Representations

Figure 6.1 shows t-SNE projections of 4,726 users’ transferred representations on the MovieLens-

Gender dataset. These user vectors are computed from the user encoder as shown in Figure 6.2.

We can see that the vectors are more mixed distributed among male and female users with

the training of PrivNet. In contract, the vectors for female users are clustered on the top-left

corner while male users are on the bottom-right without the training of PrivNet (λ = 0, see

Section 6.4.5). To quantify the difference, we perform K-means clustering on the user vectors

where K=2, and calculate the V-measure [107] which assesses the degree of overlap between the

2 clusters and the Gender groups. The measure is 0.0119 and 0.0027 respectively for without

and with training of PrivNet. Note that a lower measure is better since we do not want to the two

classes to be easily separable.
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(a) Privacy attacker. (b) Public users.

Figure 6.3: Impact of privacy component and public users. (FS-G: Foursquare-Gender, ML-G:
MovieLens-Gender, ML-A: MovieLens-Age)

Model Ablation

The key component of PrivNet is the adversary loss used to regularize the recommender. We

remove this component to show its necessity to protect the private attributes by setting the λ = 0

in Eq. (6.10). The results are summarized in Table 6.6. As we expect, PrivNet without adversary

loss is most vulnerable to privacy attacks since it has no privacy defense. There is a significant

drop in terms of all three privacy-related metrics without this model component.

Impact of Privacy Component

We vary the λ (see Eq. (6.10)) of privacy component with {0, 0.1, 0.25, 0.5, 0.75, 1.0} to show

the its impact on privacy protection and recommendation (where λ = 0 corresponds to without

privacy attack component, see also Table 6.6). Figure 6.3a shows the impact on privacy protection.

The privacy inference generally becomes more difficult with the increase of λ, showing that

the privacy inference component of PrivNet is a key factor for protecting the user privacy in

the source domain. In particular, all results of λ 6= 0 are better than that of λ = 0 in hiding

the private information. Privacy inference results, however, are subtle among different private

attributes and evaluation metrics. On the Foursquare dataset, F1 decreases at first (until λ to 0.1),

then it increases. On the MovieLens-Gender dataset, the F1 score decreases at first (until λ to
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(a) Privacy component (b) Public users

Figure 6.4: Parameter sensitivity for recommendation.

0.25) and then it increases. It means that the private information is obscured more successfully

in the beginning but less in the end. The reason may be that the model overfits by increasing the

value of λ and leads to an inaccurate estimation of privacy inference. On the MovieLens-Age

dataset, the F1 score consistently decreases with the increase of λ.

Figure 6.4a shows the impact on recommendation performance. The recommendation

performance decreases with λ increasing from 0 to 0.1 on the MovieLens dataset, showing that

increasing the impact of privacy inference component harms the recommendation quality to

some extent.

Impact of Public Users

We vary the percentage of public users Upub (see Section 6.2) with {10, 30, 50, 70, 80, 90}.

Figure 6.3b shows the impact on the privacy inference. It is surprising that the privacy inference

does not become more easy with the increase of public users. On the Foursquare dataset, it infers

inaccurately until the percentage increases to 50% and then accurately until to 80% in terms

of F1. This shows that the adversary strategy of PrivNet is effective to protect unseen users’

privacy when only a small number of users (e.g., 10%) reveal their profiles for the training. On

the MovieLens dataset, it infers inaccurately after 50% until to 80% in terms of F1.

Figure 6.4b shows the impact on recommendation performance. Since the amount of public
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No. Movie Genre Attn weight

0 Chicken Run Animation, Children, Comedy 0.127
1 X-Men Action, Sci-Fi 0.069
2 Mission: Impossible Action, Adventure, Mystery 0.001
3 Titan A.E. Adventure, Animation, Sci-Fi 0.059
4 The Perfect Storm Action, Adventure, Thriller 0.056
5 Gone in 60 Seconds Action, Crime 0.053
6 Schindler’s List Drama, War 0.098
7 The Shawshank Redemption Drama 0.331
8 The Matrix Action, Sci-Fi, Thriller 0.062
9 Shakespeare in Love Comedy, Romance 0.140

10 Howards End Drama N/A

Table 6.7: Example: Capturing short-/long-term user interests and high-level category relation-
ship among items. No. 10 is the candidate new articles to be recommended while No. 0 to No. 9
are the historical news articles. Attn weight: Attention weight.

users controls how much knowledge is shared between the source and target domains, the

recommendation performance improves with the increasing amount of public users. In summary,

PrivNet is favourable in practice since it can achieve a good tradeoff on the utility and privacy

when only a small amount of users reveal their profiles to the public.

Case Study

One advantage of PrivNet is that it can explain which item in a user’s history matters the most

for a candidate item by using the attention weights. Table 6.7 shows an example of interactions

between a user’s historical movies (No. 0∼9) and the candidate movie (No. 10). We can see

that the latest movie matters a lot since the user interests may remain the same during a short

period. The oldest movie, however, also has some impact on the candidate movie, reflecting

that the user interests may mix with a long-term characteristic. PrivNet can capture these subtle

short-/long-term user interests. Furthermore, the movie (No. 7) belonging to the same genre

as the candidate movie matters the most. PrivNet can also capture this high-level category

relationship.

6.5 Related Work

Transfer learning in recommendation Transfer learning in recommendation [9] is an effective

technique to alleviate the data sparsity issue in one domain by exploiting the knowledge from
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other domains. Typical methods apply matrix factorization [95, 111, 133] and representation

learning [29, 75, 77, 132, 143] on each domain and share the user (item) factors, or learn a

cluster level rating pattern [61, 142]. Transfer learning is to improve the target performance

by exploiting knowledge from auxiliary domains [13, 24, 30, 93, 144]. One transfer strategy

(two-stage) is to initialize a target network with transferred representations from a pre-trained

source network [90, 140]. Another transfer strategy (end-to-end) is to transfer knowledge in a

mutual way such that the source and target networks benefit from each other during the training,

with examples including the cross-stitch networks [83] and collaborative cross networks [43].

These transfer learning methods have access to the input or representations from source domain.

Therefore, it raises a concern on privacy leaks and provides an attack possibility during knowledge

transfer.

Privacy-preserving techniques Existing privacy-preserving techniques mainly belong to three

research threads. One thread adds noise (e.g., differential privacy [22]) to the released data or

the output of recommender systems [53, 81, 82, 119, 121]. One thread perturbs user profiles

such as adding (or deleting/changing) dummy items to the user history so that it hides the

user’s actual ratings [100, 122]. Adding noise and perturbing ratings may still suffer from

privacy inference attacks when the attacker can successfully distinguish the true profiles from

the noisy/perturbed ones. Furthermore, they may degrade performance since data is corrupted.

The privacy-preserving stacking technique [38, 139] is proposed to enhance a logistic regression

model by ensemble learning such that the two goals are achieved: protecting privacy and

improving performance. Furthermore, a real-world cross-organization health data is used to

evaluate the transfer learning integrated with privacy guarantee where the user privacy is of a

significant concern in such cases. Another thread uses adversary loss [5, 106] to formulate the

privacy attacker and the recommender system as an adversarial learning problem. However, they

face the data sparsity issues. A recent work [103] trains linear classifiers to predict a protected

attribute and then remove it by projecting the representation on its null-space. Since the noise is

introduced in the differential privacy, it faces the performance deterioration issue.

Federated learning Since the datasets are usually existing in different platforms, different

organizations, and different websites, the data privacy and abuse are raised when we try to

fuse them to train a recommender system. The federated learning (FL) is recently proposed

as an effective solution for tacking such issue by allowing knowledge to be shared and not

compromising user privacy. We refer readers to [137] for general concepts of federated learning
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where a comprehensive survey is provided. Some recommendation methods have adopted

federated learning so as to protect the personal data without affecting performance [12, 14, 118].

Here we focus on the applications of federating learning into recommendation in terms of three

aspects: horizontal, vertical, and transferable federated learning. Horizontal FL, or sample-based

FL, is applicable in the recommendation scenario where datasets have same/overlapped attributes

(e.g. items) but different users. When we treat each user as an example and want to exploit all

users feedbacks on their local devices, then horizontal FL scene is investigated in the Google

Android application [57]. Vertical FL, or feature-based FL, is applicable in the recommendation

scenario where datasets have shared/overlapped users but different attributes. [31, 112] proposed

a model which adopts vertical FL into matrix factorization recommendation technique. In their

setting, the users are shared for both domains while an auxiliary domain has extra information

for users called user-associated attributes. Since this model needs to know the alignment of

users between domains, the user identity faces the risk of privacy leakage. Another drawback of

these methods is that they suffer from efficiency and scalability due to high cost of encryption

computation and communication over channels.

6.6 Conclusion

We presented an attack scenario to infer the private user attributes from the transferred knowledge

in recommendation, raising the issues of source privacy leakage beyond target performance.

To protect user privacy in the source domain, a privacy-aware transfer model (PrivNet) is

proposed beyond improving the performance in the target domain. It is effective in terms of

recommendation performance and privacy protection, achieving a good trade-off between the

utility and privacy of the transferred knowledge. In future works, we want to relax the assumption

that the private user attributes need to provide in advance in order to train the privacy inference

component for protecting unseen users.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Deep transfer learning in recommendation is a novel and exciting research area, which can greatly

improve user information need as well as bring in much profit for real industry applications. In

this thesis, we have conducted the following works:

1. We survey two typical recommendation techniques, i.e., shallow and deep learning based

methods, and three typical transfer learning approaches, i.e., model-based transfer, instance-

based transfer and feature-based transfer.

2. We divide the deep knowledge transfer in recommendation into two plug-in parts, one is

the base network and the other is transfer unit. We describe two kinds of base networks

and three kinds of transfer units. They can be easily matched with each other.

3. We propose three new problem settings including cross-dataset, cross-domain, and hybrid

sources recommendation, and then design our deep transfer learning solutions correspond-

ingly,

• Deep model-based transfer for cross-dataset recommendation via Collaborative Cross

Network (CoNet),

• Deep instance-based transfer for cross-domain recommendation via TransNet,

• Deep feature-based transfer for hybrid sources recommendation via TrNews.

4. We are the very first to protect source user privacy during the knowledge transfer from the

source domain to the target domain, with focus not only on improving target performance
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Figure 7.1: Summary of Our Deep and Adversarial Transfer Learning Models in Recommenda-
tion.

but also on privacy-aware recommendation. We introduce a practical attacker scene and

then design a adversarial learning algorithm to model the recommender and the attacker,

• Adversarial transfer learning for protecting private attributes in recommendation by

learning a privacy-aware transferable representation via PrivNet,

According to the first dimension of “what to transfer” and “how to transfer” in transfer

learning, and the second dimension of privacy-preserving transfer and privacy-agnostic transfer,

we summarize our work as shown in Figure 7.1.

7.2 Future Work

In this section, we illustrate several promising potential directions for research within the field of

deep and adversarial transfer learning in recommendation. The first one is on negative transfer.

As we have shown in the deep feature-based transfer learning (TrNews), the transfer model may

face the challenge of negative transfer where a simple architecture may better than a complex one.

A detailed investigation is needed to be done since the risk of overfitting is a confounding factor.

The second one is on privacy protection. In our current work, we need to define what attribute

is to be protected. That is, we differentiate the importance of different attributes. In reality, we

may not know the relative importance of different attributes, or all attributes are needed to to

protected. More deeper work is worth conducting for these new scenarios.
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The list of publications during pursuing my PhD degree is given as follows.

Conference:

1. "TrNews: Heterogeneous User-Interest Transfer Learning for News Recommendation",

Guangneng Hu & Qiang Yang,

European Chapter of the Association for Computational Linguistics (EACL) 2021, Pages

734–744, Association for Computational Linguistics, Online

2. "PrivNet: Safeguarding Private Attributes in Transfer Learning for Recommendation",

Guangneng Hu & Qiang Yang,

Conference on Empirical Methods in Natural Language Processing (EMNLP) 2020

Findings, Pages 4506–4516, Association for Computational Linguistics, Online

3. "Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering

with Text",

Guangneng Hu, Yu Zhang & Qiang Yang,

The Web Conference (WWW) 2019, Pages 2822–2829, Association for Computing Ma-
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Guangneng Hu, Yu Zhang & Qiang Yang,
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121



North American Chapter of the Association for Computational Linguistics (NAACL) 2019,

Pages 2082–2088, Association for Computational Linguistics, Minneapolis, USA

7. "Dual Side Deep Context-aware Modulation for Social Recommendation",

Bairan Fu, Wenming Zhang, Guangneng Hu, Xinyu Dai, Shujian Huang & Jiajun Chen,

The Web Conference (WWW) 2021, Association for Computing Machinery, Online

Journal:
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