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ABSTRACT
Collaborative Filtering (CF) is the key technique for recommender
systems. CF exploits user-item behavior interactions (e.g., clicks)
only and hence suffers from the data sparsity issue. One research
thread is to integrate auxiliary information such as product reviews
and news titles, leading to hybrid filtering methods. Another thread
is to transfer knowledge from source domains such as improving
the movie recommendation with the knowledge from the book
domain, leading to transfer learning methods. In real-world appli-
cations, a user registers for multiple services across websites. Thus
it motivates us to exploit both auxiliary and source information for
recommendation in this paper. To achieve this, we propose a Trans-
fer Meeting Hybrid (TMH) model for cross-domain recommenda-
tion with unstructured text. The proposed TMH model attentively
extracts useful content from unstructured text via a memory net-
work and selectively transfers knowledge from a source domain via
a transfer network. On two real-world datasets, TMH shows better
performance in terms of three ranking metrics by comparing with
various baselines. We conduct thorough analyses to understand
how the text content and transferred knowledge help the proposed
model.
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1 INTRODUCTION
Recommender systems are widely used in various domains and
e-commerce platforms, such as recommending products to buy at
Amazon and videos to watch on Youtube. Collaborative Filtering
(CF) is an effective approach based on an intuition that if users rated
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items similarly in the past then they are likely to rate items similarly
in the future. Matrix Factorization (MF) techniques are its main
cornerstone [26, 35] since they can learn latent factors for users and
items. Recently, neural networks like multilayer perceptrons (MLP)
are used to learn non-linear interaction functions from data [10, 17].
Both MF and neural CF suffer from the data sparsity and cold-start
issues.

One solution is to integrate CF with the content information,
leading to hybrid methods. Items are usually associated with un-
structured text like the news articles and product reviews. Addi-
tional information alleviates the data sparsity issue and is essential
for recommendation beyond user-item interactions. For application
domains like recommending research papers and news articles, the
unstructured text associated with an item is its text content [1, 47].
Other domains like recommending products, the unstructured text
associated with the item is its user reviews which justify the rating
behavior of consumers [21, 33, 56]. Recently, neural networks have
been proposed to exploit the item content. For example, memory
networks [43] are used to model item reviews [19], or to model a
user’s neighbors who rated the same items with this user [11].

Another solution is to transfer the knowledge from relevant do-
mains and the cross-domain recommendation techniques address
such problems [3, 27, 37]. In real-world applications, a user typically
registers multiple service systems to acquire different information
need. For example, a user installs applications in an app store and
reads news from another website. It brings us an opportunity to
improve the recommendation performance in the target service (or
all services) by learning from across domains. In the above example,
we can represent the app installation feedback using a binary matrix
whose entries indicate whether a user has installed an app. Simi-
larly, we use another binary matrix to indicate whether a user has
read a news article. Typically these two matrices are highly sparse,
and it is beneficial to learn them simultaneously. This idea is sharp-
ened into the Collective Matrix Factorization (CMF) approach [42]
which jointly factorizes these two matrices by sharing the user
latent factors. It combines CF on a target domain and another CF
on an auxiliary domain, enabling knowledge transfer [36, 54]. In
terms of neural networks, given two activation maps from two
tasks, cross-stitch network [34] and its sparse variant [22] learn
linear combinations of both the input activations and feed these
combinations as input to the successive layers, and hence enabling
the knowledge transfer between two domains.

These two threads motivate us to exploit information from both
the content and cross-domain information for recommendation in
this paper. To capture text content and to transfer cross-domain
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knowledge, we propose a novel neural model, TMH, for cross-
domain recommendation with unstructured text. TMH can not only
attentively extract useful content via a memory network but also
selectively transfer knowledge across domains by a novel transfer
network. A shared layer of feature interactions is stacked on the top
to couple high-level representations learned from both networks.
On real-world datasets, TMH shows the better performance in
various settings. We conduct thorough analyses to understand how
the content and transferred knowledge help the proposed model.

Our contributions are summarized as follows:

• The proposed model is a novel deep model that transfers
cross-domain knowledge for recommendation with unstruc-
tured text by using an attention based neural network. (Sec. 4)
• We interpret the memory networks to attentively exploit the
text content to match word semantics with user preferences.
• The transfer network can selectively transfer source items
with the guidance of target user-item interactions by the
attentive weights.
• Our model alleviates cold-user and cold-item start issues,
and outperforms various baselines on real-world datasets.
(Sec. 5)

2 RELATEDWORKS
We review related works on three topics: collaborative filtering,
hybrid methods, and cross-domain recommendation.
Collaborative Filtering Recommender systems aim at learning
user preferences on unknown items from their past history. Content-
based recommendations are based on the matching between user
profiles and item descriptions. It is difficult to build the profile for
each user when there is no/few content. CF alleviates this issue
by predicting user preferences based on the user-item interaction
behavior, agnostic to the content [9]. Latent factor models learn
feature vectors for users and items mainly based on MF [26] which
has probabilistic interpretations [35]. Factorization machines (FM)
can mimic MF [40]. To address the data sparsity, an item-item ma-
trix called Shifted Positive Pointiest Mutual Information (SPPMI) is
constructed from the user-item interaction matrix in the CoFactor
model [28]. It then simultaneously factorizes the interaction ma-
trix and the SPPMI matrix in a shared item latent space, enabling
the usage of co-click information to regularize the learning of the
user-itemmatrix. In contrast, we use independent unstructured text
and source domain information to alleviate the data sparsity issue
in the user-item matrix. Neural networks are proposed to push
the learning of feature vectors towards non-linear representations,
including the Neural Network Matrix Factorization (NNMF) and
MultiLayer Perceptron (MLP) [10, 17]. The basic MLP architecture
is extended to regularize the factors of users and items via social
and geographical information [51]. Other neural approaches learn
from the explicit feedback for the rating prediction task [5, 56]. We
focus on learning from the implicit feedback for top-N recommen-
dation [50].
Hybrid Filtering Items are usually associated with the content
information such as unstructured text (e.g., abstracts of articles and
reviews of products). CF approaches can be extended to exploit
the content information [1, 47, 48] and user reviews [16, 20, 33].
Combining matrix factorization and topic modelling technique (e.g.,

Topic MF) is an effective way to integrate ratings with item con-
tents [2, 29, 33]. Item reviews justify the rating behavior of a user,
and item ratings are associated with their attributes hidden in re-
views [14]. Topic MFmethods combine latent item factors in ratings
with latent topics in reviews [2, 33]. The behavior factors and topic
factors are aligned with a link function such as softmax transfor-
mation in the Hidden Factors and hidden Topics (HFT) model [33]
or an offset deviation in the Collaborative Topic Regression (CTR)
model [47]. The CTR model assumes the latent item vector learnt
from the interaction data is close to the corresponding topic propor-
tions learnt from the text content, but allows them to be divergent
from each other if necessary. Additional sources of information
are integrated into CF to alleviate the data sparsity issues includ-
ing knowledge graph [49, 55]. Convolutional Networks (CNNs)
have been used to extract features from audio signals for music
recommendation [45] and from image for product and multimedia
recommendation [6, 16]. Autoencoders are used to learn an interme-
diate representations from text [48, 53]. Recurrent networks [1] and
convolutional networks [5, 24, 56] can exploit the word order when
learning the text representations. Memory networks can reason
with an external memory [43]. Due to the capability of neurally
learnt word embeddings to address the problems of word sparse-
ness and semantic gap, a memory module can be used to model
item content [19] or the neighborhood of users [11]. Memory net-
works can learn to match word semantics with the specific user. We
follow this thread by using neural networks to attentively extract
important information from text content.
Cross-domain Recommendation Cross-domain recommenda-
tion [3] is an effective technique to alleviate the data sparsity issue.
A class of MF-based methods has been applied to cross-domain rec-
ommendation. Typical methods include the CMF approach which
jointly factorizes two rating matrices by sharing the latent user
factors and hence it enables knowledge transfer. CMF has its hetero-
geneous variants [37], and codebook transfer [27]. The coordinate
system transfer can exploit heterogeneous feedbacks [38, 52]. Mul-
tiple source domains [32] and multi-view learning [13] are also
proposed for integrating information from several domains. Trans-
fer Learning (TL) aims at improving the performance of the target
domain by exploiting knowledge from source domains [36]. Similar
to TL, Multitask Learning (MTL) is to leverage useful knowledge in
multiple related tasks to help each other [4, 54]. The cross-stitch
network [34] and its sparse variant [22] enable information sharing
between two base networks for each domain in a deep way. Robust
learning is also considered during knowledge transfer [15]. These
methods treat knowledge transfer as a global process with shared
global parameters and do not match source items with the specific
target item given a user. We follow this research thread by using
neural networks to selectively transfer knowledge from the source
items.We introduce a transfer network to exploit the source domain
knowledge.

3 A BASIC NEURAL CF NETWORK
We adopt a Feedforward Neural Network (FFNN) as the base neural
CF model to parameterize the interaction function [7, 8, 17]:

f (xui |P ,Q,θf ) = ϕo (...(ϕ1 (xui ))...), (1)
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Figure 1: The architecture of TMH.

where input xui = [PT xu ,QT xi ] ∈ R2d is concatenated from
embeddings of user u and item i and is a projection of their one-hot
encodings xu ∈ {0, 1}m and xi ∈ {0, 1}n via embedding matrices
P ∈ Rm×d and Q ∈ Rn×d , respectively. The output and hidden
layers are computed by ϕo and {ϕl } in FFNN. The sizes of users and
items arem and n, respectively. The rating rui is 1 if user u has an
interaction with item i and 0 otherwise.

The base network consists of four modules with the information
flow from the input (u, i ) to the output r̂ui as follows.
Input: (u, i ) → ⊮u ,⊮i This module encodes user-item interaction
indices. We adopt the one-hot encoding. It takes user u and item
i , and maps them into one-hot encodings ⊮u ∈ {0, 1}m and ⊮i ∈
{0, 1}n where only the element corresponding to that index is 1 and
all others are 0.
Embedding: ⊮u ,⊮i → xui This module firstly embeds one-hot
encodings into continuous representations xu = PT ⊮u and xi =
QT ⊮i by embedding matrices P andQ respectively, and then con-
catenates them as xui = [xu ,xi ], to be the input of following
building blocks.
Hidden layers: xui ⇝ zui . This module takes the continuous
representations from the embedding module and then transforms
through several layers to a final latent representationzui = (...(ϕ1 (xui )...).
This module consists of hidden layers to learn nonlinear interaction
between users and items.
Output : zui → r̂ui . This module predicts the score r̂ui for the
given user-item pair based on the representation zui from the last
layer of multi-hop module. Since we focus on one-class collabo-
rative filtering, the output is the probability that the input pair is
a positive interaction. This can be achieved by a softmax layer:
r̂ui = ϕo (zui ) =

1
1+exp(−hT zui )

, where h is the parameter.

4 THE PROPOSED TMHMODEL
The architecture of the TMH model is illustrated in Fig. 1.
Matching Word Semantics with User Preferences We adapt a
memory network (MNet) to integrate unstructured text since it
can learn to match word semantics with user preferences [12, 19,
23, 44]. The MNet consists of one internal memory matrix A ∈
RL×2d , where L is the vocabulary size (typically L = 8, 000 after
processing [47]) and 2d is the dimension of each memory slot, and
one external memory matrix Cwith the same dimensions as A. The
function of the two memory matrices works as follows.

Given a document dui = (w1,w2, ...,wl ) corresponding to the
(u, i ) interaction, we form the memory slotsmk ∈ R

2d by mapping
each word wk into an embedding vector with matrix A, where
k = 1, ..., l and the length of the longest document is equal to the
memory size. We form a preference vector q (ui ) corresponding to
the given document dui and the user-item interaction (u, i ) where
each element encodes the relevance of user u to these words given
item i as: q (ui )k = xTum

(u )
k + x

T
i m

(i )
k , k = 1, ..., l , where we split the

mk = [m(u )
k ,m

(i )
k ] into the user partm(u )

k and the item partm(i )
k .

Then, we compute the attentive weights over words for a given
user-item interaction to infer the importance of each word’s unique

contribution: p (ui )k = Softmax(q (ui )k ) =
exp(βq (ui )

k )∑
k′ exp(βq

(ui )
k′ )
, where pa-

rameter β is introduced to stabilize the numerical computation
and can amplify or attenuate the precision of the attention like
a temperature [18]. We set β = d−

1
2 by scaling along with the

dimensionality [46].
We construct the high-level representations by interpolating the

external memories with the attentive weights as the output:

oui =
∑

k
p
(ui )
k ck , (2)

where the external memory slot ck ∈ Rd is another embedding
vector for wordwk by mapping it with matrix C.
Selecting Source Items to TransferWe propose a novel transfer
network (TNet) which can selectively transfer source knowledge for
specific target item in a coarse-to-fine way. Given the source items
[j]u = (j1, j2, ..., js ) with which the user u has interacted in the
source domain, TNet learns a transfer vector cui ∈ Rd to capture
the relations between the target item i and source items given the
user u. The similarities between target item i and source items can
be computed by their dot products: a(i )j = xTi x j , j = 1, ..., s, where
x j ∈ Rd is the embedding for the source item j by an embedding
matrixH ∈ RnS×d . This score computes the compatibility between
the target item and the source items consumed by the user.

Then, we normalize similarity scores to be a probability distri-
bution over source items: α (i )

j = Softmax(a(i )j ). Finally the transfer
vector is a weighted sum of the corresponding source item embed-
dings:

cui = ReLU(
∑

j
α
(i )
j x j ), (3)

where we introduce non-linearity on the transfer vector by the
rectified linear unit ReLU(x ) =max (0,x ).
Putting It All TogetherWe firstly use a simple neural CF model
(CFNet) which has one hidden layer to learn a nonlinear represen-
tation for the user-item interaction:

zui = ReLU(Wxui + b), (4)

whereW and b are the weight and bias parameters in the hidden
layer. Usually the dimension of zui is half of that xui in a typical
tower-pattern architecture.

The outputs from the three individual networks can be viewed
high-level features of the content text, source domain knowledge,
and the user-item interaction. They come from different feature
space learned by different networks. Thus, we use a shared layer on
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the top of the all features: r̂ui = 1
1+exp(−hTyui )

, where h is the pa-
rameter. The joint representation, yui = [Wooui ,Wzzui ,Wccui ],
is concatenated from the linear mapped outputs of individual net-
works where matricesWo ,Wz ,Wc are the corresponding linear
mapping transformations.
Learning Due to the nature of the implicit feedback and the task
of item recommendation, the squared loss (r̂ui − rui )2 may be not
suitable since it is usually for rating prediction. Instead, we adopt
the binary cross-entropy loss: L = −

∑
(u,i )∈S rui log r̂ui + (1 −

rui ) log(1 − r̂ui ), where the training samples S = R+T ∪ R
−
T are the

union of observed target interaction matrix and randomly sampled
negative pairs. Usually, |R+T | = |R

−
T | and we do not perform a prede-

fined negative sampling in advance since this can only generate a
fixed training set of negative samples. Instead, we generate negative
samples during each epoch, enabling diverse and augmented train-
ing sets of negative examples to be used. The objective function can
be optimized by stochastic gradient descent (SGD) and its variants
like adaptive moment(Adam) method [25].
Complexity In the model parameters Θ, the embedding matri-
ces P , Q and H contain a large number of parameters since they
depend on the input size of users and (target and source) items,
and their scale is hundreds of thousands. Typically, the number of
words, i.e., the vocabulary size is L = 8, 000 [47]. The dimension of
embeddings is typically d = 100. Since the architecture follows a
tower pattern, the dimension of the outputs of the three individual
networks is also limited within hundreds. In total, the size of model
parameters is linear with the input size and is close to the size of
typical latent factors models [42] and neural CF approaches [17]
with a hidden layer. During training, we compute the outputs of the
three individual networks in parallel using mini-batch stochastic
optimization which can be trained efficiently by back-propagation.
TMH is scalable to the number of the training data. It can easily
update when new data examples come by just feeding them into
the training mini-batch. Thus, TMH can handle the scalability and
dynamics of items and users similar to an online fashion. In con-
trast, topic modeling techniques have difficulty in benefitting from
these advantages to some extent.

5 EXPERIMENTS
In this section, we conduct empirical study to answer the following
questions: 1) how the proposed TMH model performs compared
with state-of-the-art recommender systems; and 2) how the text
content and the source domain information contributes to the pro-
posed framework. We firstly introduce the evaluation protocols and
experimental settings, and then compare the performance of dif-
ferent recommender systems. We further analyze the TMH model
to understand the impact of the memory and transfer components.
We also investigate that the improved performance comes from the
cold-users and cold-items to some extent.

5.1 Experimental Settings
Dataset We evaluate on two real-world cross-domain datasets.
The first dataset, Mobile, is provided by a large internet company,
i.e., Cheetah Mobile (http://www.cmcm.com/en-us/) [30]. The in-
formation contains logs of user reading news, the history of app
installation, and some metadata such as news publisher and user

Table 1: Datasets and statistics.

Dataset Domain Statistics Amount

Mobile News

Shared #Users 15,890

Target

#News 84,802
#Reads 477,685
Density 0.035%
#Words 612,839

Avg. Words Per News 7.2

Source
#Apps 14,340

#Installations 817,120
Density 0.359%

Amazon Product

Shared #Users 8,514

Target

#Clothes (Men) 28,262
#Ratings/#Reviews 56,050

Density 0.023%
#Words 1,845,387

Avg. Words Per Review 32.9

Source
#Products (Sports) 41,317
#Ratings/#Reviews 81,924

Density 0.023%

gender collected in one month in the US. We removed users with
fewer than 10 feedbacks. For each item, we use the news title as
its text content. Following [47], we filter stop words and use tf-
idf to choose the top 8,000 distinct words as the vocabulary. This
yields a corpus of 612K words. The average number of words per
news is less than 10. The dataset we used contains 477K user-news
reading records and 817K user-app installations. There are 15.8K
shared users which enable the knowledge transfer between the
two domains. We aim to improve the news recommendation by
transferring knowledge from app domain. The data sparsity is over
99.6%.

The second dataset is a public Amazon dataset (http://snap.
stanford.edu/data/web-Amazon.html), which has been widely used
to evaluate the performance of collaborative filtering approaches [16].
We use two categories including Amazon Men and Amazon Sports
as two domains [16, 20]. The original ratings are from 1 to 5 where
five stars indicate that a user shows a positive preference on the
item while the one star is not. We convert the ratings of 4-5 as
positive samples. The dataset we used contains 56K positive ratings
on Amazon Men and 81K positive ratings on Amazon Sports. There
are 8.5K shared users, 28K Men products, and 41K Sports goods. We
aim to improve the recommendation on the Men domain by trans-
ferring knowledge from relevant Sports domain. The data sparsity
is over 99.7%. We filter stop words and use tf-idf to choose the top
8,000 distinct words as the vocabulary [47]. The average number of
words per review is 32.9.

The statistics of the two datasets are summarized in Table 1. As
we can see, both datasets are very sparse and hence we hope to
improve performance by transferring knowledge from the auxiliary
domain and exploiting the text content as well. Note that Amazon
dataset are long text of product reviews (the number of average
words per item is 32), while Cheetah Mobile contains short text of
news titles (the number of average words per item is 7).
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Table 2: Results on Amazon data.

Method topK = 5 topK = 10 topK = 20
HR NDCG MRR HR NDCG MRR HR NDCG MRR

BPRMF .0810 .0583 .0509 .1204 .0710 .0561 .1821 .0864 .0602
CDCF .1295 .0920 .0797 .2070 .1167 .0897 .3841 .1609 .1015
CMF .1498 .0950 .0771 .2224 .1182 .0863 .3573 .1521 .0957
HFT .1077 .0815 .0729 .1360 .0907 .0767 .2782 .1252 .0854

TextBPR .1517 .1208 .1104 .1777 .1291 .1138 .2268 .1414 .1171
CDCF++ .1314 .0926 .0800 .2102 .1177 .0901 .3822 .1605 .1016
MLP .2100 .1486 .1283 .2836 .1697 .1371 .3820 .1899 .1426

MLP++ .2263 .1626 .1417 .2992 .1862 .1514 .3810 .2069 .1570
CSN .2340* .1680* .1462* .3018* .1898* .1552* .3944* .2091* .1605*
LCMR .2024 .1451 .1263 .2836 .1678 .1356 .3951 .1918 .1420
TMH .2575 .1796 .1550 .3490 .2077 .1666 .4443 .2311 .1727

Our improve 10.04% 6.90% 6.01% 15.63% 9.43% 7.34% 12.65% 10.52% 7.60%

Evaluation Protocol For item recommendation task, the Leave-
One-Out (LOO) evaluation is widely used and we follow the pro-
tocol in [17]. That is, we reserve one interaction as the test item
for each user. We determine hyper-parameters by randomly sam-
pling another interaction per user as the validation/development
set. We follow the common strategy which randomly samples 99
(negative) items that are not interacted by the user and then eval-
uate how well the recommender system can rank the test item
against these negative ones. Since we aim at top-K item recommen-
dation, the typical evaluation metrics are hit ratio (HR), Normalized
Discounted Cumulative Gain (NDCG), and Mean Reciprocal Rank
(MRR), where the ranked list is cut off at topK = {5, 10, 20}. HR
intuitively measures whether the reserved test item is present on
the top-K list and is defined as: HR = 1

|U |

∑
u ∈U δ (pu ≤ topK ),

where pu is the hit position for the test item of user u, and δ (·)
is the indicator function. NDCG and MRR also account for the
rank of the hit position, respectively, and they are defined as:
NDCG = 1

|U |

∑
u ∈U

log 2
log(pu+1) , andMRR = 1

|U |

∑
u ∈U

1
pu . A

higher value with lower cutoff indicates better performance.
BaselinesWe compare with various baselines, categorized as shal-
low/deep, single/cross-domain, and hybrid methods. MLP++: We
combine two MLPs by sharing user embeddings. CDCF++: We
extend CDCF by augmenting the feature vector with words.

Baselines Shallow method Deep method
Single-domain BPRMF [41] MLP [17]
Cross-domain CDCF [31], CMF [42] MLP++, CSN [34]

Hybrid HFT [33], TextBPR [16, 20] LCMR [19]
Cross + Hybrid CDCF++ TMH (ours)

Implementation For BPRMF, we use LightFM’s implementation
which is a popular CF library. For CDCF and CDCF++, we adapt the
official libFM implementation. For CMF, we use a Python version
reference to the original Matlab code. For HFT and TextBPR, we use
the code released by their authors. The word embeddings used in
the TextBPR are pre-trained by GloVe [39]. For latent factor models,
we vary the number of factors from 10 to 100 with step size 10.
For MLP, we use the code released by its authors. The MLP++ and
CSN are implemented based on MLP. The LCMR model is similar to

our MNet model. Our methods are implemented using TensorFlow.
Parameters are randomly initialized from Gaussian N (0, 0.012).
The optimizer is Adam with initial learning rate 0.001. The size of
mini batch is 128. The ratio of negative sampling is 1. The MLP
and MLP++ follows a tower pattern, halving the layer size for each
successive higher layer. Specifically, the configuration of hidden
layers in the base MLP network is [64→ 32→ 16→ 8] as in the
original paper [17]. For CSN, it requires that the number of neurons
in each hidden layer is the same and the configuration is [64]∗4 (i.e.,
[64 → 64 → 64 → 64]). We study several typical configurations
{16, 32, 64, 80} ∗ 4. The embedding dimension is d = 75.

5.2 Comparison Results
In this section, we report the recommendation performance of
different methods. The comparison results are shown in Table 3
and Table 2 respectively on the Mobile and Amazon datasets where
the last row is the relative improvement of TMH vs the best baseline.
We have the following observations. Firstly, we can see that the
proposed TMH model performs better than all baselines on the
two datasets at each setting, including the MLP network, shallow
cross-domain models (CMF and CDCF), deep cross-domain models
(MLP++ and CSN), and hybrid methods (HFT and TextBPR, LCMR).
These results demonstrate the effectiveness of the proposed neural
model.

On the Mobile dataset, the differences between TMH and other
methods are more pronounced for small numbers of recommended
items including top-5 or top-10 where we achieve average 2.25%
relative improvements over the best baseline. This is a desirable
feature since we often recommend only a small number of top
ranked items to consumers to alleviate the information overload
issue.

Note that the relative improvement of the proposed model vs.
the best baseline is more significant on the Amazon dataset than on
the Mobile dataset, obtaining average 9.56% relative improvements
over the best CSN baseline, though the Amazon data is sparser than
the Mobile data (see Table 1). We show the benefit of combining
text content by comparing with CSN. One explanation is that the
relatedness of the Men and Sports domains is larger than that

2826



Table 3: Results on Mobile data.

Method topK = 5 topK = 10 topK = 20
HR NDCG MRR HR NDCG MRR HR NDCG MRR

BPRMF .4380 .3971 .3606 .4941 .4182 .3694 .5398 .4316 .3730
CDCF .5066 .3734 .3293 .5325 .4089 .3441 .5452 .4374 .3519
CMF .4789 .3535 .3119 .5846 .3879 .3263 .6662 .4086 .3320
HFT .4966 .3617 .3175 .5580 .4093 .3365 .6547 .4379 .3445

TextBPR .4948 .4298 .3826 .5466 .4499 .3913 .6123 .4682 .3958
CDCF++ .4981 .3693 .3267 .6055 .4041 .3411 .6244 .4335 .3491
MLP .5380 .4121 .3702 .6176 .4381 .3810 .6793 .4529 .3851

MLP++ .5524 .4284 .3871 .6319 .4535 .3976 .6910 .4691 .4019
CSN .5551* .4323* .3920* .6327* .4574* .4025* .6908 .4732* .4068*
LCMR .5476 .4189 .3762 .6311 .4460 .3874 .6927* .4619 .3918
TMH .5664 .4427 .4018 .6438 .4680 .4124 .6983 .4820 .4163

Our improve 2.04% 2.42% 2.51% 1.75% 2.32% 2.47% 0.81% 1.86% 2.34%

between the news and app domains. This will benefit all cross-
domain methods including CMF, CDCF, MLP++, and CSN, since
they exploit information from both two domains. Another reason
is that the text content contains richer information on the Amazon
dataset. As it is shown in Table 1, the average number of words in
the product reviews is more than that in the news titles. This will
benefit all hybrid methods including HFT, TextBPR, and LCMR. We
show the benefit of transferring source items by comparing with
LCMR.

The hybrid TextBPR model composes a document representa-
tion by averaging the words’s embeddings. This can not distinguish
the important words to match user preferences. This may explain
that it has some difficulty in improving the recommendation per-
formance when integrating text content. For example, it cannot
consistently outperform the pure CF method, MLP. The CSN model
transfers every representations from the source network with the
same coefficient. This may have a risk in transferring the noise
and harm the performance, as pointed out in its sparse variant [22].
On the Amazon dataset, it is inferior to the TMH model by a large
margin (though TMH leverages content information). In contrast,
the memory and transfer components are both selective to extract
useful information based on the attention mechanism. This may
explain that our model is consistently the best at all settings.

There is a possibility that the noise from auxiliary domain and
some irrelevance information contained in the unstructured text
pose a challenge for exploiting them. This shows that the proposed
model is more effective since it can select useful representations
from the source network and attentively focus on important words
to match preferences of users. In summary, the empirical com-
parison results demonstrate the superiority of the proposed TMH
model to exploit the text content and source domain knowledge for
recommendation.

5.3 Impact of Text and Source Domain
We have shown the effectiveness of the two memory and transfer
components together in the proposed framework. We now investi-
gate the contribution of each network to the TMH by eliminating
the impact of text content and source domain from it in turn. 1)
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Figure 2: Contributions from unstructured text and cross-
domain knowledge on Mobile Data.

TMH\M\T: Eliminating the impact of both content and source in-
formation from TMH. This is a collaborative filtering recommender.
Actually, it is equivalent to a single hidden layer MLP model. 2)
TMH\M: Eliminating the impact of content information (MNet)
from TMH. This is a novel cross-domain recommender which can
adaptively select source items to transfer via the attentive weights.
3) TMH\T: Eliminating the impact of source information (TNet)
from TMH. This is a novel hybrid filtering recommender which can
attentively match word semantics with user preferences.

The ablation analyses of TMH are shown in Figure 2 (Results on
Amazon data are not shown due to space limit). The performance
degrades when either memory or transfer modules is eliminated.
This is understandable since we lose some information. In other
words, the two components can extract useful knowledge to im-
prove the recommendation performance. For example, TMH\T and
TMH\M reduce 1.1% and 4.3% relative NDCG@10 performance,
respectively, by comparing with TMH on the Mobile dataset (they
are 8.5% and 16.1% on Amazon), suggesting that both memory and
transfer networks learn essential knowledge for recommendation.
On the two datasets, removing the memory component degrades
the performance worse than removing the transfer component. This
may be due to that the text content contains richer information or
the source domain contains much more noise or both.
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Figure 3: The Missed Hit Users (MHU) distribution (not nor-
malized) over the number of training examples on the Mo-
bile (left) and Amazon (right) datasets.

5.4 Improvement on Cold Users and Items
The cold-user and cold-item problems are common issues in recom-
mender systems. When new users enter into a system, they have no
history that can be exploited by the recommender system to learn
their preferences, leading to the cold-user start problem. Similarly,
when latest news are released on the Google News, there are no
reading records that can be exploited by the recommender system
to learn users’ preferences on them, leading to the cold-item start
problem. In general, it is very hard to train a reliable recommender
system and make predictions for users and items that have few
interactions. Intuitively, the proposed model can alleviate both the
cold-user and cold-item start issues. TMH alleviates the cold-user
start issue in the target domain by transferring his/her history from
the related source domain. TMH alleviates the cold-item start issue
by exploiting the associated text content to reveal its properties,
semantics, and topics. We now investigate whether TMH indeed im-
proves the performance over the cold users and items by comparing
with the pure neural collaborative filtering method, MLP.

We analyse the distribution of Missed Hit Users (MHUs) of TMH
and MLP (at cutoff 10). We expect that the cold users in MHUs can
be reduced by using the TMH model. The more amount we can
reduce, the more effective that TMH can alleviate the cold-user
start issues. The results are shown in Figure 3 where the number
of training examples can measure the “coldness” of a user. Natu-
rally, the MHUs are most of the cold users who have few training
examples. As we can see, the number of cold users in MHUs of
MLP is higher than that of TMH. If the cold users are defined as
those with less than seven training examples, then TMH reduces
the number of cold users from 4,218 to 3,746 on the Amazon dataset,
achieving relative 12.1% reduction. On the Mobile dataset, if the
cold users are those with less than ten training examples (Mobile is
denser than Amazon), then TMH reduces the number of cold users
from 1,385 to 1,145 on the Mobile dataset, achieving relative 20.9%
reduction. These results show that the proposed model is effective
in alleviating the cold-user start issue. The results on cold items are
similar and we omit them due to the page limit.

6 CONCLUSION
It is shown that the text content and the source domain knowledge
can help improve the recommendation performance and they can
be effectively integrated under a neural architecture. The sparse

target user-item interaction matrix can be reconstructed with the
knowledge from both kinds of information. The results demonstrate
that our model outperforms the baseline that relies on the memory
network only or relies on the transfer network only. In real-world
services, data sources may belong to different providers. The data
privacy is a big issue when we combine the multiple data sources.
In our future work, it is worth developing new learning techniques
to learn a combined model while protecting user privacy.
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