Dual Side Deep Context-aware Modulation for Social Recommendation

Bairan Fu, Wenming Zhang, Guangneng Hu^{*}, Xinyu Dai, Shujian Huang, Jiajun Chen

Natural Language Processing Group, Nanjing University *Hong Kong University of Science and Technology

April 19-23, 2021

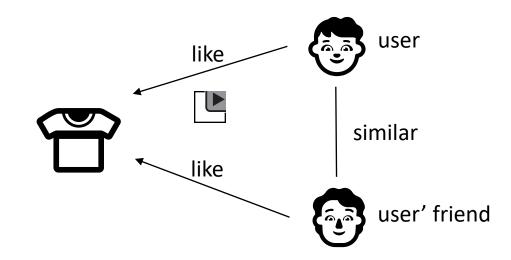
Problem

Social Networks

Recommendation

The Web Conference 2021

Bairan Fu @ NJU

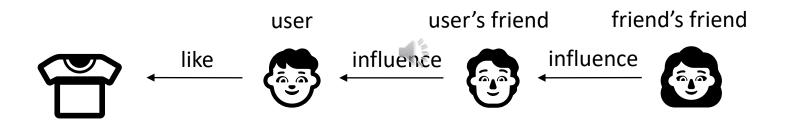

Related Works

Social Regularization

(Hao Ma, WSDM'11)

Assume that users who have social relations may have similar preference and design social regularization to restrain the user's embedding learning.

Limitation: only consider local social neighbors' information and neglect the helpful information from distant neighbors.

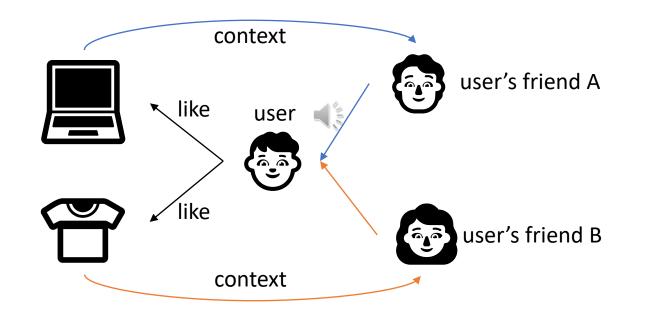

Related Works

High-order Social Influence

(Le Wu, TKDE'21)

Assume that connected people would influence each other based on social influence theory and aggregate their influence to enhance current user's preference.

Limitation: model the friends' influence without considering the specific recommendation context.


Related Works

Context-aware Social Influence

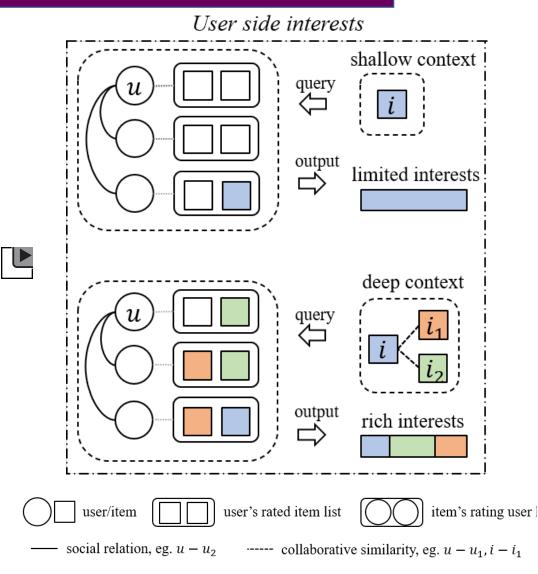
(Chong Chen, WSDM'19)

Assume that friends' influence strength may be different when it comes to different candidate items and consider the candidate as specific context to model the friends' influence.

Limitation: only considering the candidate item as a (shallow) context leads to interest information biased to some extend.

The Web Conference 2021

Bairan Fu @ NJU

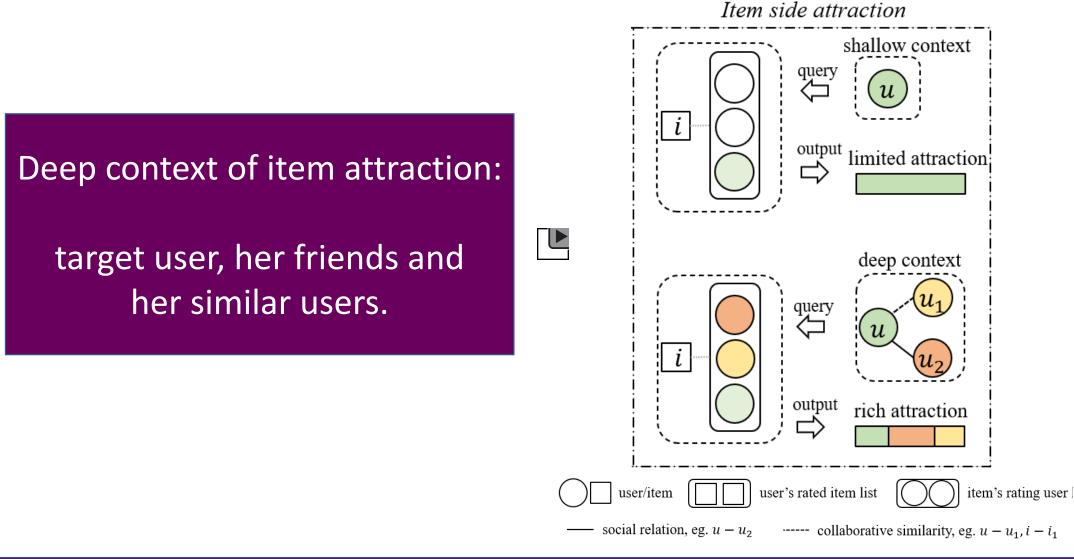


Motivation

6/21

April 2021

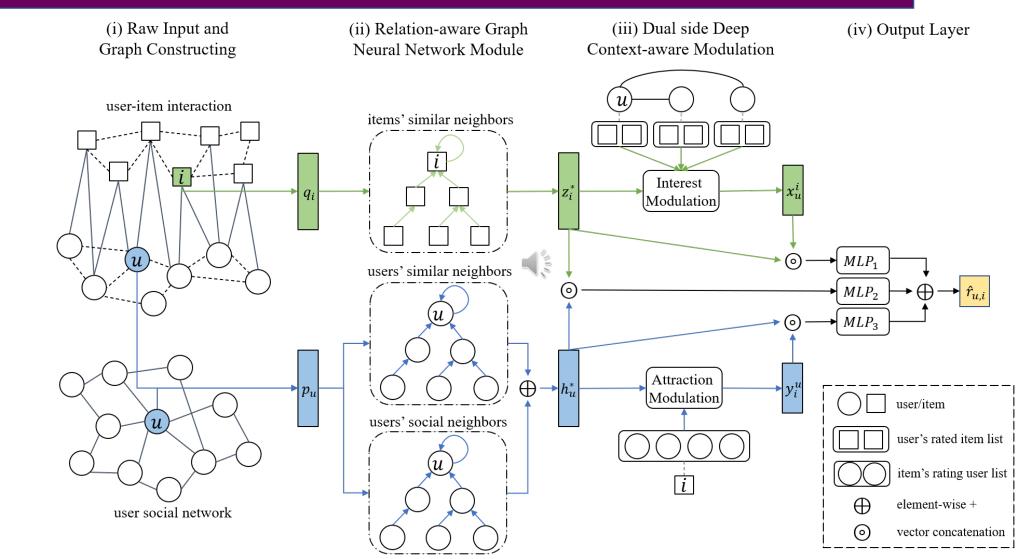
Deep context of user and friends' interest:


candidate item and it's similar items.

The Web Conference 2021

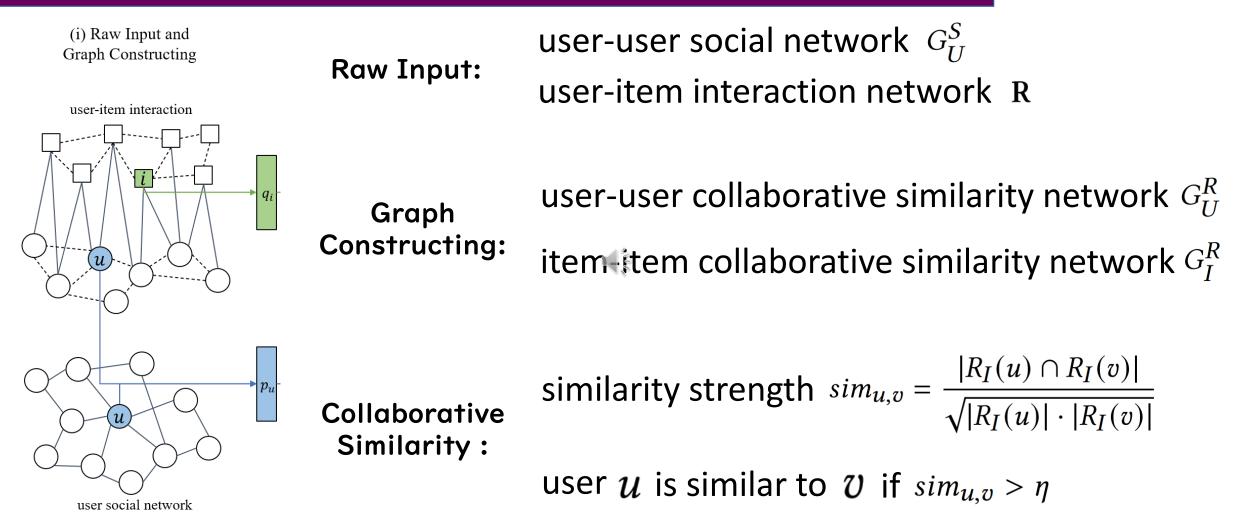
Bairan Fu @ NJU

Motivation


The Web Conference 2021

Bairan Fu @ NJU

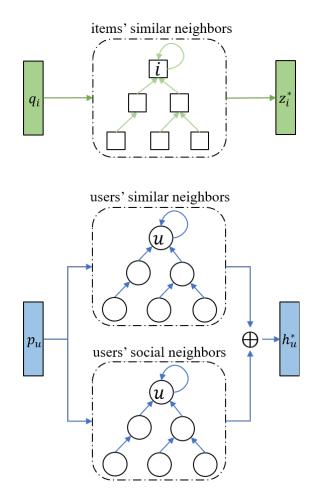
Our Model: DICER


The Web Conference 2021

Bairan Fu @ NJU

April 2021

Raw Input and Graph Constructing


Bairan Fu @ NJU

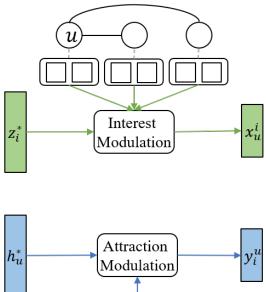
High-order Relation Exploitation

(ii) Relation-aware Graph Neural Network Module

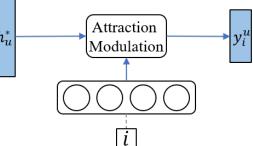
Aggregate item-itemAggregate user-user collaborativecollaborative similar neighborssimilar neighbors

$$\begin{aligned} z_i^{l+1} &= AGG_I^R \left(z_i^l, \ z_j^l, \forall j \in N_I(i) \right) & h_u^{R,l+1} = AGG_U^R \left(h_u^{R,l}, \ h_v^{R,l}, \forall v \in N_U(u) \right) \\ &= \sigma \left(\sum_{j \in N_I(i)} \left(W_1^I z_i^l + W_2^I(z_i^l \odot z_j^l) \right) \right) &= \sigma \left(\sum_{v \in N_U(u)} \left(W_1^U h_f^{R,l} + W_2^U(h_u^{R,l} \odot h_v^{R,l}) \right) \right) \end{aligned}$$

Formulas of user social neighbors are similar


Bairan Fu @ NJU

Deep Context-aware Modulation



(iii) Dual Side Deep Context-aware Modulation

Deep context-aware user interest modulation

$$\begin{split} m_{u}^{i} &= f_{I}\left(z_{i}^{\star}, \ z_{j}^{\star}, \forall j \in R_{I}(u)\right) \quad m_{u}^{i} = MP_{j \in R_{I}(u)}\left(\{z_{j,d}^{\star} \odot z_{i,d}^{\star}\}\right), \forall d = 1, ..., D\\ \alpha_{u,f}^{*} &= (m_{u}^{i})^{\top} \cdot (m_{f}^{i}) \qquad \alpha_{u,f} = \frac{exp(\alpha_{u,f}^{*})}{\sum_{f \in F_{U}(u)} exp(\alpha_{u,f}^{*})}\\ x_{u}^{i} &= m_{u}^{i} + \sum_{f \in F_{U}(u)} \alpha_{u,f} \cdot m_{f}^{i} \end{split}$$

Deep context-aware item attraction modulation

 $y_i^u = f_U\left(h_u^{\star}, \ h_v^{\star}, \forall v \in R_U(i)\right) \qquad \qquad y_i^u = MP_{v \in R_U(i)}\left(\{h_{v,d}^{\star} \odot h_{u,d}^{\star}\}\right), \forall d = 1, ..., D$

Output Layer

(iv) Output Layer

Predict based on user-item matching perspective

$$x_{u}^{i}$$

$$x_{u}^{i}$$

$$x_{u}^{i}$$

$$x_{u}^{i}$$

$$x_{u}^{i}$$

$$MLP_{2}$$

$$f_{u,i}$$

$$h_{u}^{i}$$

$$MLP_{3}$$

$$MLP_{3}$$

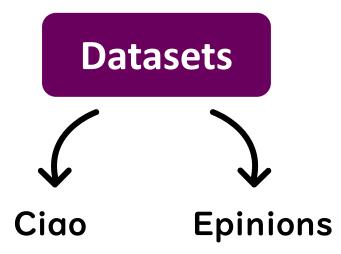
$$r_{ui}^O = MLP_1(h_u^{\star}, z_i^{\star})$$

Predict based on user interest and item attraction perspectives

user interest:

$$r_{ui}^U = MLP_2(x_u^i, z_i^{\star})$$

item attraction: $r_{ui} = MLP_3(y_i^2, h_u^2)$


$$m^{I} = MID(u^{u} h^{\star})$$

 $\hat{r}_{u,i} = \lambda_1 r_{ui}^O + \lambda_2 r_{ui}^U + \lambda_3 r_{ui}^I$

Bairan Fu @ NJU

Two public datasets

Table 2: Statistics of the datasets

Dataset	Ciao	Epinion	
Num. of Users	7,375	20,608	
Num. of Items	106,797	23,585	
Num. of Ratings	282,650	454,002	
Num. of Relations	111,781	351,486	
Rating Density	0.0359%	0.0934%	
Relation Density	0.2055%	0.0828%	

Bairan Fu @ NJU

Evaluation Protocol

Data partitionFor Ciao, sequentially 80% for training, 10% for validating and 10%
for testingFor Epinions, sequentially 80% for training, 10% for validating
and 10% for testing

Evaluation metrics For two datasets, *Recall@K* and *NDCG@K* for rank performance. $K = \{5, 10, 15\}$

Implementation

Python with PyTorch + Tesla v100 GPU with 32G memory

Experiments

Main Competitive Methods

Social recommendation	TrustMF TrustSVD	Trust matrix factorization – TPAMI'17
Deep learning based recommendation	NCF NGCF	Deep learning based recommendation– WWW'17 Graph based recommendation– SIGIR'19
Deep learning based social recommendation	SAMN DiffNet++	Attention Mechanism– WSDM'19 Graph Neural Network– TKDE'20

Bairan Fu @ NJU

Experiments



Comparison of the Methods

Models	Social Domain		Item Domain		User Interest		Item Attraction		DL
Wodels	S	HS	Ι	HI	SC	DC	SC	DC	
TrustMF	\checkmark	\	\checkmark	\	\	\	\	\	
TrustSVD	\checkmark	\	\checkmark		\checkmark	\		\	
NCF		\	\checkmark	\		\		\	\checkmark
NGCF		\	\checkmark	\checkmark		\	\	\	\checkmark
SAMN	\checkmark	\	\checkmark	\	\checkmark	\	\	\	
DiffNet++	\checkmark	\checkmark	\checkmark	\checkmark		\	\	\	
DICER		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

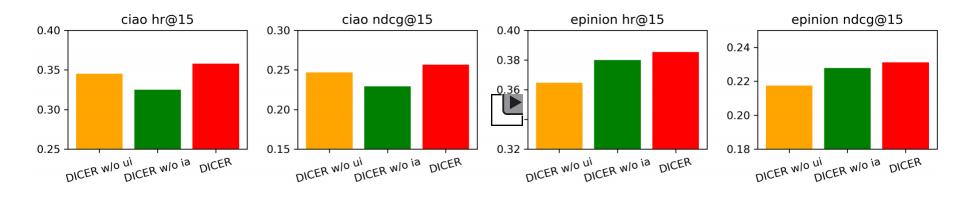
"S" denotes the social information and "HS" denotes the high-order social information; "I" denotes the item information and "HI" denotes the high-order item information; "SC" denotes shallow context-aware and "DC" denotes deep context-aware; "DL" denote deep learning based methods.

Bairan Fu @ NJU

Experiments

Table1: Comparisons of different methods on two datasets. The last column "RI" indicates the relative improvement of DICER over the corresponding baseline on average.

Ciao	Recall@5	Recall@10	Recall@15	NDCG@5	NDCG@10	NDCG@15	RI
BPR	0.1782	0.2143	0.2469	0.1618	0.1720	0.1814	+42.84%
FM	0.1852	0.2269	0.2613	0.1638	0.1760	0.1861	+37.83%
TrustMF	0.2151	0.2631	0.3027	0.1916	0.2062	0.2179	+18.28%
TrustSVD	0.2159	0.2698	0.3117	0.1884	0.2056	0.2179	+17.53%
NCF	0.1840	0.2268	0.2609	0.1644	0.1773	0.1873	+37.62%
NGCF	0.2330	0.2821	0.3185	0.2063	0.2212	0.2319	+10.53%
SAMN	0.2322	0.2836	0.3245	0.2030	0.2205	0.2332	+10.40%
DiffNet++	0.2330	0.2844	0.3259	0.2063	0.2226	0.2351	+9.59%
DICER	0.2554	0.3151	0.3579	0.2243	0.2437	0.2565	
Epinion	Recall@5	Recall@10	Recall@15	NDCG@5	NDCG@10	NDCG@15	RI
BPR	0.1616	0.2264	0.2716	0.1253	0.1484	0.1622	+44.06%
FM	0.1592	0.2273	0.2763	0.1233	0.1476	0.1627	+44.38%
TrustMF	0.1816	0.2602	0.3163	0.1374	0.1651	0.1821	+27.75%
TrustSVD	0.1927	0.2623	0.3090	0.1466	0.1712	0.1852	+24.31%
NCF	0.1834	0.2624	0.3187	0.1397	0.1675	0.1844	+26.28%
NGCF	0.2099	0.2918	0.3488	0.1618	0.1908	0.2080	+11.80%
SAMN	0.2206	0.3055	0.3625	0.1697	0.1996	0.2170	+6.89%
D'ODI (0.0100	0.2797	0 1749	0.2055	0.2236	+3.21%
DiffNet++	0.2298	<u>0.3183</u>	<u>0.3786</u>	<u>0.1742</u>	0.2033	0.2230	+3.2170


The Web Conference 2021

Bairan Fu @ NJU

Figure1: Effect of dual side information on Ciao and Epinion datasets.



w/o ui: removed user interest;

w/o ia: removed item attraction.

Bairan Fu @ NJU



Table2: Effect of deep context and modulation on Ciao.

Models	recall@5	recall@10	recall@15	ndcg@5	ndcg@10	ndcg@15
DICER- α	0.2307	0.2842	0.3302	0.2030	0.2193	0.2327
DICER- β	0.2340	0.2928	0.3380	0.2066	0.2251	0.2388
DICER- μ	0.2401	0.2945	0.3357	0.2108	0.2289	0.2401
DICER- α & β & μ	0.2187	0.2733	3169	0.1918	0.2093	0.2222
DICER-attn	0.2150	0.2688	0.3097	0.1875	0.2054	0.2179
DICER	0.2554	0.3151	0.3579	0.2243	0.2437	0.2565

- α : removed item's collaborative similarity; - β : removed user's collaborative similarity; - μ : removed user's social relation; -attn: replace modulation function with a attention mechanism.

Bairan Fu @ NJU

Our contributions can be summarized as follows

- i) General Aspects: model user interest and item attraction under deep context.
- i) Novel Methodologies: GNN + context-aware modulation
- ii) Multifaceted Experiments: comparison + ablation study + parameter sensitivity

Bairan Fu @ NJU

Available sources

Paper & Codes: https://arxiv.org/abs/2103.08976

Contact us: fubairan@smail.nju.edu.cn, daixinyu@nju.edu.cn

The Web Conference 2021

Bairan Fu @ NJU

