

Combining Ratings, Social Relations, and Reviews for Recommendation

<u>Guang-Neng Hu</u>, Xin-Yu Dai, Yunya Song (HKBU), Shu-Jian Huang, Jia-Jun Chen

RSs are Ubiquitous

 Books at Amazon

ck here.)

1.

d

)

<u>pries</u>

<u>s</u>

- Movies at Netflix
- People at OkCupid

- *Rec*: Users x Items
 → Ratings
- Predict unknown ratings from observed data

Typical Model: Probabilistic Matrix Factorization (PMF)

Low dimensional representations of users and of items

Salakhutdinov & Mnih, Probabilistic matrix factorization, NIPS 2008

Issues of PMF

- Sparse rating matrix, e.g.,
 - Epinions: 0.022%

- Cold-start users & items
 - Have no or few ratings

• Ciao: 0.11%

Statistics	Epinions	Ciao
# of Users	49,454	7,340
# of Items	74,154	22,472
# of Ratings/Reviews	790,940	183,974
# of Social Relations	434,680	112,942
# of Words	2,246,837	28,874,000
Rating Density	0.00022	0.0011
Social Density	0.00018	0.0021
Ave. Words Per Item	30.3	1284.9

One Research Line to Address the Issues

• Topic MF: Integrating item reviews into ratings

Item reviews justify the ratings

One Research Line (cont')

• Typical model: Hidden factors and hidden topics (HFT)

• The rating behavior of users is influenced by their friends

Jie Tang

917 friends

Jun Zhu

583 friends

• Typical model: Local and global recommender (LOCABAL)

Tang et al., Exploiting local and global social context for recommendation, IJCAI 2013

- Item reviews and social relations are both useful
 - Demonstrated by HFT and LOCABAL respectively
- Topic MF, e.g., HFT
 - ignores the social relations
- Social MF, e.g., LOCABAL
 - ignores the item reviews

Combining Ratings, Social Relations, and Reviews for Recommendation

 Item reviews and social relations are both useful for improving rating prediction

Modelling Three Kinds of Data Sources

- Key: connecting relations and reviews through ratings
 - For rating source, learning latent representations of users and of items

- Key: connecting relations and reviews through ratings
 - For rating source, learning latent representations of users and of items
 - For social relation source, learning latent social representations of users and their social relation matrix

- Key: connecting relations and reviews through ratings
 - For rating source, learning latent representations of users and of items
 - For social relation source, learning latent social representations of users and their social relation matrix
 - For item reviews, learning topic distributions (and word distributions)

- *Key*: connecting relations and reviews through ratings
 - For rating source, learning latent representations of users and of items
 - For social relation source, learning latent social representations of users and their social relation matrix
 - For item reviews, learning topic distributions and word distributions

$$\mathcal{L}(\Theta, \Phi, z, \kappa) \triangleq \sum_{R_{i,j} \neq 0} W_{i,j} (R_{i,j} - \hat{R}_{i,j})^2 \text{Exploiting ratings}$$

$$-\lambda_{\text{rev}} \sum_{d=1}^{J} \sum_{n \in N_d} (\log \theta_{z_{d,n}} + \log \phi_{z_{d,n}, w_{d,n}}) \text{Exploiting reviews}$$

$$+\lambda_{\text{rel}} \sum_{T_{i,k} \neq 0} C_{i,k} (S_{i,k} - U_i^{\text{T}} H U_k)^2 + \lambda \Omega(\Theta), \text{Exploiting social relations}$$
here parameters $\Theta = \{U, V, H\}$ are associated with rat ad social relations, parameters $\Phi = \{\theta, \phi\}$ associated

 Graph structure of neighbors captures social influence locality, i.e., user behaviors are mainly influenced by close/direct friends in their ego networks

$$\min_{U,V,H} \sum_{R_{i,j} \neq 0} W_{i,j} (R_{i,j} - \hat{R}_{i,j})^2 + \lambda \sum_{T_{i,k} \neq 0} C_{i,k} (S_{i,k} - U_i^T H U_k)^2 + \lambda \Omega(\Theta)$$

The trust values

$$C_{ik} = \sqrt{d_{u_k}^- / (d_{u_i}^+ + d_{u_k}^-)},$$

Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, CIKM 2008 Zhang et al., Social influence locality for modeling retweeting behaviors, IJCAI 2013

- Alternating two steps
 - Topic assignments zd,n for each word in reviews corpus are fixed; then we update the terms Θ, Φ, and κ by gradient descent
 - Parameters associated with reviews corpus θ and ϕ are fixed; then sample *zd,n* by iterating through all docs and each word within

update
$$\Theta^{\text{new}}, \Phi^{\text{new}}, \kappa^{\text{new}} = \underset{\Theta, \Phi, \kappa}{\arg \min} \mathcal{L}(\Theta, \Phi, \kappa, z^{\text{old}});$$

 Θ, Φ, κ
(1)
sample $z_{d,n}^{\text{new}}$ with probability $p(z_{d,n}^{\text{new}} = f) = \phi_{f,w_{d,n}}^{\text{new}}.$

Gradient descent

- Alternating two steps
 - Topic assignments zd,n for each word in reviews corpus are fixed; then we update the terms Θ, Φ, and κ by gradient descent
 - Parameters associated with reviews corpus θ and φ are fixed; then sample zd,n by iterating through all docs and each word within

$$\begin{split} \frac{1}{2} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j:R_{i,j} \neq 0} W_{i,j} (\hat{R}_{i,j} - R_{i,j}) V_j + \lambda U_i \\ &+ \lambda_{\text{rel}} \sum_{k:T_{k,i} \neq 0} C_{i,k} (U_k^{\text{T}} H U_i - S_{i,k}) H^{\text{T}} U_k \\ &+ \lambda_{\text{rel}} \sum_{k:T_{i,k} \neq 0} C_{k,i} (U_i^{\text{T}} H U_k - S_{i,k}) H U_k. \\ \\ \frac{\partial \mathcal{L}}{\partial V_j} &= 2 \sum_{i:R_{i,j} \neq 0} W_{i,j} (\hat{R}_{i,j} - R_{i,j}) U_i \\ &- \lambda_{\text{rev}} \kappa \Big(M_j - \frac{m_j}{z_j} \exp(\kappa V_j) \Big) + 2\lambda V_j. \\ \\ \frac{1}{2} \frac{\partial \mathcal{L}}{\partial H} &= \lambda_{\text{rel}} \sum_{T_{i,k} \neq 0} C_{i,k} (U_i^{\text{T}} H U_k - S_{i,k}) U_i U_k^{\text{T}} + \lambda H. \\ &\frac{\partial \mathcal{L}}{\partial \psi_{fw}} = -\lambda_{\text{rev}} \Big(M_{fw} - \frac{m_f}{z_f} \exp(\psi_{fw}) \Big). \\ \\ \frac{\partial \mathcal{L}}{\partial \kappa} &= -\lambda_{\text{rev}} \sum_{j,f} V_{jf} \Big(M_{jf} - \frac{m_j}{z_i} \exp(\kappa V_{jf}) \Big). \end{split}$$

Datasets

• Epinions and Ciao

<u>http://www.public.asu.edu/~jtang20/</u>

Statistics	Epinions	Ciao
# of Users	49,454	7,340
# of Items	74,154	22,472
# of Ratings/Reviews	790,940	183,974
# of Social Relations	434,680	112,942
# of Words	2,246,837	28,874,000
Rating Density	0.00022	0.0011
Social Density	0.00018	0.0021
Ave. Words Per Item	30.3	1284.9

Metric and Code

- RMSE (root-mean-square error)
 - The lower, the better

$$RMSE_{\mathcal{T}} = \sqrt{\sum_{(u_i, v_j) \in \mathcal{T}} (R_{i,j} - \hat{R}_{i,j})^2 / |\mathcal{T}|}$$

- PMF
 - <u>http://www.cs.toronto.edu/~rsalakhu/BPMF.html</u>
- HFT
 - <u>http://cseweb.ucsd.edu/~jmcauley/</u>

Comparing Social MF

• eSMF vs. LOCABAL

• MR3 vs. PMF, HFT, and LOCABAL (F = 10)

Datasets	Training	Methods				Improvement of MR3 vs.			
		Mean	PMF	HFT	LOCABAL	MR3	PMF	HFT	LOCABAL
Epinions	20%	1.2265	1.2001	1.1857	1.1222	1.1051	8.60%	7.29%	1.55%
	50%	1.2239	1.1604	1.1323	1.1055	1.0809	7.35%	4.76%	2.28%
	80%	1.2225	1.1502	1.0960	1.0892	1.0648	8.02%	2.93%	2.29%
	90%	1.2187	1.1484	1.0867	1.0840	1.0634	7.99%	2.19%	1.94%
Ciao	20%	1.1095	1.0877	1.0439	1.0287	1.0142	7.25%	2.93%	1.43%
	50%	1.0964	1.0536	1.0379	0.9930	0.9740	8.17%	6.56%	1.95%
	80%	1.0899	1.0418	0.9958	0.9709	0.9521	9.42%	4.59%	1.97%
	90%	1.0841	1.0391	0.9644	0.9587	0.9451	9.95%	2.04%	1.44%
Average							8.34%	4.16%	1.86%

• F: the number of latent factors; Default: 10

- λ*rel*: controls the contribution from social *rel*ations
- λ*rev*: controls the contribution from *rev*iews
- Default: 0.001, 0.05

 A novel framework to exploit ratings, social relations, and reviews simultaneously for recommendation

- An advanced method to exploit ratings and social relations more tightly by capturing the graph structure of neighbors
- Significant improvements over the state of the art methods on the rating prediction task

Implicit feedback

• Temporal dynamics

• Number of hidden topics in reviews different from that of latent factors in ratings

- Salakhutdinov & Mnih, *Probabilistic matrix factorization*, NIPS 2008
- McAuley & Leskovec, *Hidden factors and hidden topics*, RecSys 2013
- Ma et al., <u>SoRec: Social Recommendation Using Probabilistic Matrix</u> <u>Factorization</u>, CIKM 2008
- Tang et al., <u>Exploiting local and global social context for</u> <u>recommendation</u>, IJCAI 2013
- Zhang et al., Social influence locality for modeling retweeting behaviors, IJCAI 2013
- Hu et al., <u>A Synthetic Approach for Recommendation: Combining</u> <u>Ratings, Social Relations, and Reviews</u>, to appear in IJCAI 2015

Thanks

Q&A