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Typical Model: Probabilistic Matrix
Factorization (PMF)

Learning
| )
CTye-Lrediction
I J IxF T
I: #Users, J: #ltems F: dimensionality of latent factors

Salakhutdinov & Mnih, Probabilistic matrix factorization, NIPS 2008



Issues of PMF

* Sparse rating matrix, e.g., ¢ Cold-start users & items

* Epinions: 0.022% * Have no or few ratings
* Ciao: 0.11%

Statistics Epinions Ciao

# of Users 49.454 7,340

# of Items 74,154 22,472

# of Ratings/Reviews 790,940 183,974
# of Social Relations 434,680 112,942

# of Words 2,246,837 28,874,000
Rating Density 0.00022 0.0011
Social Density 0.00018 0.0021

Ave. Words Per Item 30.3 1284.9




One Research Line to Address the Issues

* Topic MF: Integrating item reviews into ratings
* [tem reviews justify the ratings
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One Research Line (cont’)

* Typical model: Hidden factors and hidden topics (HFT)

Item item topic
parameters distribution
Learning item ‘ ¢ Learning item
parameters by ranstorm topic distribution
factorizing A exp(K7ix) by topic
rating matrix L PN exp(Rig) modeling
v € R® f, € AK (i 29“@_1)

McAuley & Leskovec, Hidden factors and hidden topics, RecSys 2013



Another Research Line to Address the Issues

* Social MF: Integrating social relations into ratings
* The rating behavior of users is influenced by their friends
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Another Research Line (cont’)

* Typical model: Local and global recommender (LOCABAL)

Exploiting global social context by user reputation

min E 51 (R% o u-TV .)2 Exploiting ratings by learning
U.V.H #} latent representations of

users and of items

n
T 2
+ « Z Z (Sik — Uy Huk) Exploiting local social

i=1 up EN; context by learning latent

social representations
+ AU + VI + [H]F),

Tang et al., Exploiting local and global social context for recommendation, 1JCAI 2013
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Issues of Topic MF and Social MF

* [tem reviews and social relations are both useful
* Demonstrated by HFT and LOCABAL respectively

* Topic MF, e.g., HFT

* ignores the social relations

» Social MF, e.g., LOCABAL

* ignores the item reviews
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Combining Ratings, Social Relations,
and Reviews for Recommendation
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Modelling Three Kinds of Data Sources

* Key: connecting relations and reviews through ratings

* For rating source, learning
latent representations of
users and of items

HeRFXFU RV eRIX e APX) e AP
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Modelling Three Kinds of Data Sources

* Key: connecting relations and reviews through ratings
* For rating source, learning

latent representations of

users and of items <H U> ° o 0
* For social relation source,

learning latent social

representations of users and ° o

their social relation matrix

HeRFXFU RV eRIX e APX) e AP
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Modelling Three Kinds of Data Sources

* Key: connecting relations and reviews through ratings
* For rating source, learning

latent representations of

users and of items o o ° 0 gb>
e For social relation source,

learning latent social

representations of users and ° °

their social relation matrix
* For item reviews, learning HeRFXF U e RFXL 1V ¢ RFX e AFXI ¢ e AFXL

topic distributions (and word
distributions)
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Modelling Three Kinds of Data Sources

* Key: connecting relations and reviews through ratings
* For rating source, learning

latent representations of
users and of items o o ° o 0
* For social relation source,
learning latent social
representations of users and o ° o
their social relation matrix l
* For item reviews, learning HeRFXF [ e RFXL Y ¢ REXI g AFXJ ¢ ¢ APXE

topic distributions and word
distributions
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* Graph structure of neighbors captures social influence
locality, i.e., user behaviors are mainly influenced by
close/direct friends in their ego networks

~

. 2
i, D R, 2o Wi Bij = Rij)
2
+ A CiilSin —UYHUL) + 2O

The trust values

Cit = \/dun (1, + i), C

Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, CIKM 2008
Zhang et al., Social influence locality for modeling retweeting behaviors, [JCAI 2013
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Learning Parameters

* Alternating two steps

* Topic assignments zd,n for each word in reviews corpus are fixed;
then we update the terms O, ®, and k by gradient descent

* Parameters associated with reviews corpus 6 and ¢ are fixed; then
sample zd,n by iterating through all docs and each word within

update "W PV W — aromin £(O, O, k, 2°9);
0,9,k
(1

with probability p(ZﬂeW _ f) _ gbnew

d,’n f;wd,n.

new
d,n

sample z
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* Alternating two steps
e Topic assignments zd,n for

each word in reviews corpus

are fixed; then we update
the terms O, ®, and « by
gradient descent

* Parameters associated with
reviews corpus 6 and ¢ are
fixed; then sample zd,n by
iterating through all docs
and each word within

Gradient descent
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Datasets

* Epinions and Ciao
* http://www.public.asu.edu/~jtang20/

Statistics Epinions Ciao
# of Users 49. 454 7,340
# of Items 74,154 22,472

# of Ratings/Reviews 790,940 183,974
# of Social Relations 434,680 112,942

# of Words 2,246,837 28,874,000
Rating Density 0.00022 0.0011
Social Density 0.00018 0.0021

Ave. Words Per Item 30.3 1284 .9
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Metric and Code

* RMSE (root-mean-square error)
* The lower, the better

RMSET = \/Z(u, oy i~ 13’@',3-)2/|T\

* PMF
* http://www.cs.toronto.edu/~rsalakhu/BPMF.htm]

s HFT
e http://cseweb.ucsd.edu/~jmcauley/
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Comparing Social MF

* eSMF vs. LOCABAL

113F

— o LOCABAL | o LOCABAL
—%— eSMF 1.04 —%— eSMF

1.02

% th
= 11 =
x x
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1.08F
0.94r
1 07 1 1 | 1 1 1 | 3 1 1 | 1 1 1 |
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Left: Epinions; Right: Ciao
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Comparing Different Recommender Systems

 MR3 vs. PMF, HFT, and LOCABAL (F = 10)

Datasets  Trainine Methods Improvement of MR3 vs.
& "Mean PMF  HFT LOCABAL [ MR3 || PMF  HFT LOCABAL
20% 12265 1.2001 1.1857 [.1222 [.1051|] 8.60% 7.29% [.55%
Bl S0% 12239 11604 1.1323 1.1055 1.0809 || 7.35% 4.76% 2.28%
PIIONS ¢, 12225  1.1502  1.0960 1.0892 1.0648 || 8.02% 2.93% 2.29%
00% 12187 1.1484 1.0867 1.0840 1.0634 || 7.99% 2.19% 1.94%
20%  1.1095 1.0877 1.0439 [.0287 10142 7.25% 2.93% [.43%
Ciac 50%  1.0964 1.0536 1.0379 09930 109740 8.17% 6.56% 1.95%
80%  1.0899 1.0418 0.9958 0.9709 109521 9.42% 4.59% 1.97%
00%  1.0841 1.0391 009644  0.9587 0.9451 || 9.95% 2.04% 1.44%
Average 8.34% 4.16% 1.86%
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Impact of Reviews and Social Relations

* MR3 com d with its th m ts (F =10
comparead wi ITS ree components =
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Sensitivity to Parameters

e F: the number of latent factors; Default: 10

—— 80% as training 1.03F —— 80% as training [
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i«
q o GO N g
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Left: Epinions; Right: Ciao
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Sensitivity to Parameters (cont’)

e Arel: controls the
contribution from
social relations

1.095

1.09r

1.085

¢
1.08

e Arev: controls the
contribution from
reviews .

e Default: 0.001, 0.05 .|

RMSE

1.065

0 0.001 0.005 0.01 0.05 0.1
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Conclusions

* A novel framework to exploit ratings, social relations, and
reviews simultaneously for recommendation

* An advanced method to exploit ratings and social relations
more tightly by capturing the graph structure of neighbors

* Significant improvements over the state of the art methods on
the rating prediction task
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Future Works

* Implicit feedback

* Temporal dynamics

* Number of hidden topics in reviews different from that of
latent factors in ratings
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